

Introduction to machine learning

by Davide Chicco
davide.chicco@gmail.com

MBP Talk

2017-01-25

 2

Session 1 - Information and theory
● 1a - Introduction to machine learning

➢ what is computational intelligence?
➢ supervised/unsupervised learning
➢ how to choose the proper machine learning algorithm

● 1b - Overview of machine learning programming languages and
platforms (Torch, Python Theano, R)

Session 2 - Practice
● 2a - Introduction to k-nearest neighbors (k-NN)
● 2b - Exercise in R. Usage of k-NN for binary classification of

cancer-related data

Outline

 3

Session 1 - Information and theory
● 1a - Introduction to machine learning

➢ what is computational intelligence?
➢ supervised/unsupervised learning
➢ how to choose the proper machine learning algorithm

● 1b - Overview of machine learning programming languages and
platforms (Torch, Python Theano, R)

Outline

 4

What is machine learning?

What is machine learning?
(computational intelligence)
(data mining)
(pattern recognition)

artificial intelligence

machine
learning

 6

What is machine learning?

What is machine learning?
(computational intelligence)
(data mining)
(pattern recognition)

“[Machine Learning is the] field of
study that gives computers the
ability to learn without being
explicitly programmed.”

(Arthur Samuel, 1954)

(c) Image from Toptal.com

 7

What is machine learning?

What is machine learning?
(computational intelligence)
(data mining)
(pattern recognition)

“a computer program is said to learn
from experience E with respect to
some task T and some performance
measure P, if its performance on T,
as measured by P, improves with
experience E.”

(Tom Mitchell, 1997)
(c) Image from Toptal.com

 8

What is machine learning?

What is machine learning?
(computational intelligence)
(data mining)
(pattern recognition)

“Machine learning [is] the technology
that enables computational systems
to adaptively improve their
performance with experience
accumulated from the observed data”

(Yaser Abu-Mostafa, 2012)

 9

Learning from data

Machine learning example: series of number

1 2 4 8 16 32 …

what is the next number?

 10

Learning from data

Machine learning example: series of number

1 2 4 8 16 32 …

what is the next number?

64

 11

Learning from data

Machine learning example: series of number

1 2 4 8 16 32

what is the next number?

data

 12

Learning from data

Machine learning example: series of number

1 2 4 8 16 32

what is the next number?

data

task

 13

Learning from data

Machine learning example: series of number

1 2 4 8 16 32

what is the next number?

64

data

task

prediction

 14

Machine learning algorithm
Hyper-parameters

● These parameters express
“higher-level” properties of the
model such as its complexity or
how fast it should learn.
Hyperparameters are usually
fixed before the actual training
process begins.

● Their values can strongly
influence the performance and
the results of the machine
learning algorithm application

● Examples:
– number of hidden layers in an

artificial neural network

 15

Machine learning algorithm

Hyper-parameters
● These parameters express “higher-level” properties of the model such as

its complexity or how fast it should learn. Hyper-parameters are usually
fixed before the actual training process begins.

● Their values can strongly influence the performance and the results of the
machine learning algorithm application

● Examples: number of clusters in k-nearest neighbors

 16

Machine learning algorithm

Hyper-parameters
● Finding the best values for the hyper-parameters is a key point in machine

learning

● Usually, the the best practice is a grid search on all the possible values (or
most of them), on an independent subset

 17

Dataset arrangement

If you have a machine learning algorithm
already optimized (where there are no
hyper-parameters to tune), you have to split
the dataset into 2 subsets:

1 - a training set, used only to train the
algorithm
(usually the 80% of the available dataset)

2 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

 18

Dataset arrangement

If you have a machine learning algorithm
already optimized (where there are no
hyper-parameters to tune), you have to split
the dataset into 2 subsets:

1 - a training set, used only to train the
algorithm
(usually the 80% of the available dataset)

2 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

 VERY RARE CASE!

 19

Dataset arrangement

But if you have a machine learning algorithm
to optimize (where you have to select
the best hyper-parameters), you
have to split the dataset into:

1 - a training set, used only to train the
algorithm (usually the 60% of the available
dataset)

2 - a validation set, used only to evaluate
the trained algorithm model and its
hyper-parameters (usually the 20% of
the available dataset)

3 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

Validation set

 20

Dataset arrangement

But if you have a machine learning algorithm
to optimize (where you have to select
the best hyper-parameters), you
have to split the dataset into:

1 - a training set, used only to train the
algorithm (usually the 60% of the available
dataset)

2 - a validation set, used only to evaluate
the trained algorithm model and its
hyper-parameters (usually the 20% of
the available dataset)

3 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

Validation set

 VERY COMMON CASE!

 21

Dataset arrangement

Example, suppose you have an artificial neural network and you have to
decide its hyper-parameters (what number of hidden layers and hidden
units)

1 – choose a new configuration of
hyper-parameters, then train on the training set

2 – after training, evaluate your model by
applying it to the validation set

3 – if the evaluation on the validation set
led to sufficient accuracy (e.g. MCC >= 0.5),
apply the trained model to the test set

 – else: go back to point 1

Training set

Test set

complete
dataset

Validation set

 22

Dataset arrangement

IMPORTANT: THESE SUBSETS MUST
ALWAYS BE INDEPENDENT!!!

SO NO INTERSECTIONS!!!

A data intersection between these
subsets will completely invalidate
and corrupt your procedure

Training set

Test set

complete
dataset

Validation set

 23

Data engineering is often the key!

● Often the success of a machine learning algorithm is not the algorithm,
but the data engineering (or feature engineering)

● Often gathering data, integrating them, cleaning them and pre-
processing them might be the key for success

● Why? It's fundamental to add knowledge and expertise about the
domain, and to prepare a dataset “ready” to solve a specific problem

● Often, for example, it's necessary to normalize the data into the [0, 1]
interval Values in [0; 5000] Values in [0; 1]

 24

Machine learning problems

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Reinforcement learning
● continuous interaction from the environment

 25

Machine learning problems

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Reinforcement learning
● continuous interaction from the environment

 26

Machine learning problems

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Example: face detection (Image from CreativeCommons.org)

 27

Machine learning problems

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Example: gene expression data clustering
Activity levels of gene expression measured in lymphoma
patients
Cluster analysis determined three different subtypes
(where only two were known before), having different
 clinical outcomes

 28

Machine learning problems

Reinforcement learning
● continuous interaction from the environment

Example: stock exchange data (Image from CreativeCommons.org)

 29

Machine learning problems

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Reinforcement learning
● continuous interaction from the environment

WE FOCUS ON THIS TODAY

 30

Dictionary

Example: tumor dataset
● Cell samples were taken from tumors in breast cancer patients

before surgery, and imaged
● Tumors were excised
● Patients were followed to determine whether or not the cancer

recurred, and how long until recurrence or disease free

● 32 real-valued variables per tumor.
● 2 variables that can be predicted:

– Outcome (R=recurrence, N=non-recurrence)
– Time (until recurrence, for R, time healthy, for N)

(c) Doina Precup

 31

Dictionary

Example: tumor dataset
● Columns are called input variables or features or attributes
● The outcome and time (which we are trying to predict) are called output

variables or targets
● A row in the table is called training example or instance
● The whole table is called dataset
● The problem of predicting the recurrence is called (binary) classification
● The problem of predicting the time is called regression

(c) Doina Precup

 32

Problem definition

Supervised learning problem

● Let X denote the space of input values
● Let Y denote the space of output values
● Given a data set D X × Y⊂ , find a function: h : X Y→
● such that h(x) is a good predictor for the value of y

● h is called a hypothesis

● Problems are categorized by the type of output domain
– If Y = R (real numbers set), this problem is called regression
– If Y is a categorical variable (i.e., part of a finite discrete set), the
problem is called classification
– In general, Y could be a lot more complex (graph, tree, etc), which is
called structured prediction

(c) Doina Precup

 33

Steps solving a supervised learning problem

Steps for solution:

1) Decide what the input-output pairs are (e.g. input: gene expression
data of patients; output: healthy/unhealthy patients)

2) Decide how to encode inputs and outputs. This defines the input space
X, and the output space Y. (e.g. input: table of real values; output: vector
of 0/1 values, which correspond to false/true)

3) Choose a class of hypotheses/representations H (e.g. the patients'
status can be inferred through a method which clusters the input gene
expression data)

 34

Steps solving a supervised learning problem

Steps for solution:

4) Choose an error function (cost function) to define the best hypothesis
(e.g. MSE: mean square error: ||predictedValue(i) – valueTarget(i)||^2)

5) Choose an algorithm for searching efficiently through the space of
hypotheses (linked to (3): e.g. choose k-nearest neighbors, or k-means)

 35

Overfitting

Very important problem
● Overfitting happens when an algorithm adapts “too much” to the

training set, and so then performs very badly in the validation set
and in the test set

● The algorithm gets somehow “hallucinated” by the training set

● E.g. suppose you train a robot to recognize plants, and then it
“thinks” that everything is a plant

Training: “This is a plant” Testing: “This is a plant” WRONG

 36

Overfitting

Very important problem
● An algorithm is well trained if it minimizes the error during training and if it

is able to generalize well in the validation set and test set

● Some (not definitive) solutions:

● Held out approach (as we already said, divide dataset into 3 independent
subsets: training set, validation set, test set)

● Regularization (penalization in the loss function for complex models) [we
won't see this here]

● More data

● Cross-validation

 37

Overfitting

Very important problem
● An algorithm is well trained if it minimizes the error during training and if it

is able to generalize well in the validation set and test set

● Some (not definitive) solutions:

● Held out approach (as we already said, divide dataset into 3 independent
subsets: training set, validation set, test set)

● Regularization (penalization in the loss function for complex models) [we
won't see this here]

● More data

● Cross-validation

THESE METHODS CAN HELP
CONTRASTING OVERITTING

BUT THE CANNOT
COMPLETELY SOLVE THE

PROBLEM!

 38

Overfitting
Cross validation

● Choose a number of folds
(usually k=10)

● Divide the dataset (training set
and validation set, excluding the
test set) into k folds

● For each ith fold (i=1,…,10):
– choose the ith fold as

validation set
– choose all the other folds as

training set
– train the model on the

training set and evaluate it on
the validation set

● Output: all the predictions made
for each element of the dataset

validation

validation

validation

validation

validation

 42

Which machine learning algorithm to choose?

Thumb-rule

Start with a simple algorithm!

If it works, great! You'll have all the parameters and features easily under
control.

If it does NOT work, good anyway. You'll have a weak classifier to make
comparison with other algorithms.

 43

Which machine learning programming languages?
Go with open source, open access, open science tools

- R (pro: easy to use, especially for beginners; cons: slow, and not suitable
for big data)

- Torch (pro: fast, libraries for deep learning; cons: complicated for
beginners)

- Python Theano (pro: fast, libraries for many algorithms; cons: complicated
for beginners)

Avoid proprietary software (e.g. MATLAB)!
- you or your institution has to pay a license; if you write pieces of code in
that language, and then you have to change job, or collaborate with
someone who does not have the license, you will not be able to use your
code again!

 44

Session 2 - Practice
● 2a - Introduction to k-nearest neighbors (k-NN)
● 2b - Exercise in R. Usage of k-NN for binary classification of

cancer-related data

Outline

 45

k-nearest neighbors algorithm

(c) Byclb.com

k-NN

● k nearest neighbors is a simple
algorithm that stores all available
cases and classifies new cases by a
majority vote of its k neighbors.
This algorithms segregates
unlabeled data points into well
defined groups

 46

k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN

● k: hyper-parameter that represents the
number of neighbors to consider

● The selection of k will determine how
well the data can be utilized to
generalize the results of the kNN
algorithm. A large k value has benefits
which include reducing the variance due
to the noisy data; the side effect being
developing a bias due to which the
learner tends to ignore the smaller
patterns which may have useful
insights.

Example of k-NN classification. The
test sample (green circle) should be
classified either to the first class of
blue squares or to the second class of
red triangles. If k = 3 (solid line circle)
it is assigned to the second class
because there are 2 triangles and only
1 square inside the inner circle. If k = 5
(dashed line circle) it is assigned to the
first class (3 squares vs. 2 triangles
inside the outer circle).

(c) Wikipedia

 47

k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN example

● Let’s consider 10 ’drinking items’ which are rated on two parameters on a
scale of 1 to 10. The two parameters are “sweetness” and “fizziness”. This
is more of a perception based rating and so may vary between individuals. I
would be considering my ratings (which might differ) to take this
illustration ahead. The ratings of few items look somewhat as:

...

...

 48

k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN example

● From the above figure, it is clear we have bucketed the 10 items into 4
groups namely, ’COLD DRINKS’, ‘ENERGY DRINKS’, ‘HEALTH DRINKS’ and
‘HARD DRINKS’. The question here is, to which group would ‘Maaza’ fall
into? This will be determined by calculating distance.

 49

k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN example

● “Sweetness” determines the perception of the sugar content in the items.
“Fizziness” ascertains the presence of bubbles in the drink due to the
carbon dioxide content in the drink. Again, all these ratings used are based
on personal perception and are strictly relative.

 50

k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN example: calculating distance

● Now, calculating distance between ‘Maaza’ and its nearest neighbors
(‘ACTIV’, ‘Vodka’, ‘Pepsi’ and ‘Monster’) requires the usage of a distance
formula, the most popular being Euclidean distance formula i.e. the
shortest distance between the 2 points which may be obtained using a
ruler.

 51

k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN example: calculating distance

● If k=1, the algorithm will consider only 1 nearest neighbor. The nearest
neighbor to Maaza is ACTIV, so the algorithm will assign Maaza to the
HEALTHY DRINKS cluster

...

...

 52

k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN example: calculating distance

● If k=2, the algorithm will consider 2 nearest neighbors. The nearest
neighbors to Maaza are ACTIV and Real, so the algorithm will assign
Maaza to the HEALTHY DRINKS cluster, again

...

...

 53

k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN example: calculating distance

● If k=3, the algorithm will consider 3 nearest neighbors. The nearest
neighbors to Maaza are ACTIV, Real (HEALTHY DRINKS), and Monster
(ENERGY DRINKS). The algorithm will assign Maaza to the HEALTHY
DRINKS cluster, again (most frequent class among the 3 neighbors)

...

...

 54

k-nearest neighbors algorithm

Practical session with R

We are going to apply the k-nearest neighbors algorithm to classify cancer
data

Machine learning finds extensive usage in pharmaceutical industry especially
in detection of oncogenic (cancer cells) growth. R finds application in
machine learning to build models to predict the abnormal growth of cells
thereby helping in detection of cancer and benefiting the health system.

Let’s see the process of building this model using kNN algorithm in R
Programming.

(c) Analytics Vidhya

 55

k-nearest neighbors algorithm

Practical session with R – 1, data collection
We will use a data set of 100 patients (created solely for the purpose of
practice) to implement the k-nn algorithm and thereby interpreting results
.The data set has been prepared keeping in mind the results which are
generally obtained from DRE exam.

The data set consists of 100 observations and 10 variables (out of which 8
numeric variables and one categorical variable and is ID) which are as
follows: Radius, Texture, Perimeter, Area, Smoothness,
 Compactness, Symmetry, Fractal dimension

The goal is to classify each instance into Benign or Malignant

The dataset file can be downloaded at: www.bit.ly/prostate_cancer_DRE

(c) Analytics Vidhya

 56

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 1, data collection
Here's how this data table looks like:

 57

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 1, data collection
Here's how this data table looks like:

target column

 58

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, preparing the data

We have to read the dataset file

Suppose we have the data file in the data folder:
PATH_TO_DATA/prostate_cancer_DRE_exam_set.csv

prc_data <- read.csv("PATH_TO_DATA/prostate_cancer_DRE_exam_set.csv",

stringsAsFactors = FALSE) # read.csv() imports the required data set and saves it to the prc
data frame. stringsAsFactors = FALSE: helps to convert every character vector to a factor wherever it
makes sense.

str(prc_data) # We use this command to see whether the data is structured or not.

 59

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, preparing the data

head(prc_data) # to take a look to the first lines of the table

prc_data <- prc_data[-1] # removes the first variable(id) from the data set.

http://www.bit.ly/prostate_cancer_DRE

 60

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, preparing the data

prc_data <- prc_data[sample(nrow(prc_data)),] # we shuffle the columns, to remove any
possible rank-related patterns of data (COMMAND TO ADD TO THE PIECE OF CODE)

table(prc_data$diagnosis_result) # it helps us to get the numbers of patients

 B M
38 62

 61

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, normalizing numeric data

This normalization is of paramount importance since the scale used for the values for each variable might be
different. The best practice is to normalize the data and transform all the values to a common scale.

normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x))) }

The first variable in our data set (after removal of id) is ‘diagnosis_result’ which is not numeric in nature. So,
we start from 2nd variable. The function lapply() applies normalize() to each feature in the data frame. The
final result is stored to prc_n data frame using as.data.frame() function

prc_data_norm <- as.data.frame(lapply(prc_data[2:9], normalize))

Let's check the normalization:

summary(prc_data_norm$radius)

 62

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, training set and test set

To simplify this exercise, we heuristically fix k=10, so we do not run any optimization of this hyper-
parameter. Because of this decision, we won't split the dataset into 3 subsets (training set, validation set,
and test set) as usually we would do, but we will split only into training set, and test set.

We train our k-NN algorithm on training set and test it on test set. For this, we would divide the data set
into 2 portions in the ratio of 80% / 20% (assumed) for the training and test data set respectively. You may
use a different ratio altogether depending on the problem requirement.

training_set_size <- 80
dataset_size <- dim(prc_data_norm)[1]

prc_data_train <- prc_data_norm[1:training_set_size,]
prc_data_test <- prc_data_norm[(training_set_size+1):dataset_size,]

Our target variable is ‘diagnosis_result’ which we have not included in our training and test data sets.

prc_data_train_labels <- prc_data[1:training_set_size, 1]
prc_data_test_labels <- prc_data[(training_set_size+1):dataset_size, 1]

This code takes the diagnosis factor in column 1 of the prc data frame and on turn creates
prc_data_train_labels and prc_data_test_labels data frame.

 63

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 3, traning the model

Let's now train our model on the training set, and test it on the test data, through the knn() function.

The knn () function needs to be used to train a model for which we need to install a package ‘class’. The
knn() function identifies the k-nearest neighbors using Euclidean distance where k is a user-specified
number.

library(class)

K <- 10

prc_data_test_pred <- knn(train = prc_data_train, test = prc_data_test, cl =
prc_data_train_labels, k=K)

IMPORTANT: to choose the best value for the hyper-parameter k, we should use an optimization procedure
(training on training data; evaluate the model on the validation data; select the model which led to the top
performance in the validation data, and apply it to the test data). Here, for simplicity, we select k=10, that
is the square root of the number of observations k = sqrt(100) = 10

prc_data_test_pred contains the targets predicted by k-NN for the test set

 64

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

We have built the model but we also need to check the accuracy of the predicted values in
prc_data_test_pred as to whether they match up with the known values in prc_data_test_labels. To ensure
this, we need to use the CrossTable() function available in the package ‘gmodels’.

library(“gmodels”)

CrossTable(x=prc_data_test_labels, y=prc_data_test_pred, prop.chisq=FALSE)

The output will be something like this:

 65

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

The test data consisted of 35 observations. Out of which 5 cases have been accurately predicted (TN->True
Negatives) as Benign (B) in nature which constitutes 14.3%. Also, 16 out of 35 observations were
accurately predicted (TP-> True Positives) as Malignant (M) in nature which constitutes 45.7%. Thus a total
of 16 out of 35 predictions where TP i.e, True Positive in nature.

There were no cases of False Negatives (FN) meaning no cases were recorded which actually are malignant
in nature but got predicted as benign. The FN’s if any poses a potential threat for the same reason and the
main focus to increase the accuracy of the model is to reduce FN’s.

 66

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

There were 14 cases of False Positives (FP) meaning 14 cases were actually benign in nature but got
predicted as malignant.

The total accuracy of the model is 60 %((TN+TP)/35) which shows that there may be chances to improve
the model performance

 67

k-nearest neighbors algorithm

(c) Wikipedia

Practical session with R – 4, evaluate the model performance

When the prediction set is made of real value and there's not a fixed likelihood threshold to compute the
confusion matrix, the best evaluation score to use is the PRECISION-RECALL Area Under the Curve (PR-
AUC). This curve considers all the possible likelihood thresholds.

In our case, both the input dataset and the predictions are binary, so we can consider the following scores.

The best (most useful and effective) score to use for a classification problem is the Matthews correlation
coefficient (MCC), because it is based upon the size of the 4 confusion matrix categories.

 68

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

We can compute the MCC score with this R function developed on Kaggle.com

 # Compute the Matthews correlation coefficient (MCC) score
 # Jeff Hebert 9/1/2016
 # Geoffrey Anderson 10/14/2016
mcc <- function (actual, predicted)
{
 TP <- sum(actual == 1 & predicted == 1)
 TN <- sum(actual == 0 & predicted == 0)
 FP <- sum(actual == 0 & predicted == 1)
 FN <- sum(actual == 1 & predicted == 0)

 sum1 <- TP+FP; sum2 <-TP+FN ; sum3 <-TN+FP ; sum4 <- TN+FN;
 denom <- as.double(sum1)*sum2*sum3*sum4
 if (any(sum1==0, sum2==0, sum3==0, sum4==0)) {
 denom <- 1
 }
 mcc <- ((TP*TN)-(FP*FN)) / sqrt(denom)
 return(mcc)
}

The results can be between -1 (worst prediction) and +1 (perfect prediction).

 69

k-nearest neighbors algorithm

Practical session with R – 4, evaluate the model performance

In our example, we have first to transform the “B” and “M” labels to 0s and 1s:

prc_data_test_labels_binary_TEMP <- replace(prc_data_test_labels,
prc_data_test_labels=="M", 1)
prc_data_test_labels_binary <- replace(prc_data_test_labels_binary_TEMP,
prc_data_test_labels=="B", 0)
prc_data_test_labels_binary <- as.numeric (prc_data_test_labels_binary)
prc_data_test_labels_binary

prc_data_test_pred_AS_CHAR <- as.character(prc_data_test_pred)

prc_data_test_pred_binary_TEMP <- replace(prc_data_test_pred_AS_CHAR,
prc_data_test_pred_AS_CHAR=="M", 1)

prc_data_test_pred_binary <- replace(prc_data_test_pred_binary_TEMP,
prc_data_test_pred_AS_CHAR=="B", 0)

prc_data_test_pred_binary <- as.numeric (prc_data_test_pred_binary)
prc_data_test_pred_binary

mcc(prc_data_test_labels_binary, prc_data_test_pred_binary)

The result is +0.59 (-1 <= MCC <= +1)

 70

k-nearest neighbors algorithm

Practical session with R – 5, implement optimization

Exercise for the audience: optimize the value of k

Steps:
- split the input dataset into training set, validation set, and test set
- try different values of k (how?)
- choose the best model (how?)

 71

References
Books, papers, courses

Books:
- C. Bishop, “Pattern recognition and machine learning”, Springer, 2006
- P. Baldi, “Machine learning: the bioinformatics approach”, MIT Press,
2001

Papers:
- P. Domingos, “A few useful things to learn about machine learning”,
Communications of ACM, 2012

Videocourses:
- Andrew Ng, “Machine learning”, Coursera
 https://www.coursera.org/learn/machine-learning

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

