

Introduction to machine
learning in biomedical

informatics

by Davide Chicco
davide.chicco@gmail.com www.DavideChicco.it

Medical Biophysics Department talks

2019-01-25

 2

“Ten quick tips for machine learning in
computational biology”, Davide Chicco, BioData Mining
10:35, 2017.
https://doi.org/10.1186/s13040-017-0155-3

Paper published

https://doi.org/10.1186/s13040-017-0155-3

 3

Session 1 - Information and theory
● Introduction to machine learning

➢ what is machine learning?
➢ dataset arrangement
➢ supervised/unsupervised learning
➢ Overfitting
➢ machine learning programming languages and

platforms (Torch, Python Theano, R)

Session 2 - Practice
● 2a - Introduction to k-nearest neighbors (k-NN)
● 2b - Exercise in R. Usage of k-NN for binary classification

of cancer-related data

Outline

 4

What is machine learning?

What is machine learning?
(computational intelligence)
(data mining)
(pattern recognition)

artificial intelligence

machine
learning

 6

What is machine learning?

What is machine learning?
(computational intelligence)
(data mining)
(pattern recognition)

“[Machine Learning is the]
field of study that gives
computers the ability to learn
without being explicitly
programmed.”

(Arthur Samuel, 1954)
(c) Image from Toptal.com

 7

What is machine learning?

What is machine learning?
(computational intelligence)
(data mining)
(pattern recognition)

“a computer program is said to
learn from experience E with
respect to some task T and
some performance measure P, if
its performance on T, as
measured by P, improves with
experience E.”

(Tom Mitchell, 1997)
(c) Image from Toptal.com

 8

What is machine learning?

What is machine learning?
(computational intelligence)
(data mining)
(pattern recognition)

“Machine learning [is] the
technology that enables
computational systems to
adaptively improve their
performance with experience
accumulated from the observed
data”

(Yaser Abu-Mostafa, 2012)

 9

Learning from data

Machine learning example: series of number

1 2 4 8 16 32 …

what is the next number?

 10

Learning from data

Machine learning example: series of number

1 2 4 8 16 32 …

what is the next number?

64

 11

Learning from data

Machine learning example: series of number

1 2 4 8 16 32

what is the next number?

data

 12

Learning from data

Machine learning example: series of number

1 2 4 8 16 32

what is the next number?

data

task

 13

Learning from data

Machine learning example: series of number

1 2 4 8 16 32

what is the next number?

64

data

task

predictio
n

 14

Hyper-parameters

 15

Machine learning algorithm
Hyper-parameters

● These parameters express “higher-level” properties of the model
such as its complexity or how fast it should learn.
Hyperparameters are usually fixed before the actual training
process begins.

● Their values can strongly influence the performance and the
results of the machine learning algorithm application

● Examples:
– Number k of clusters in k-nearest neighbors

 16

Machine learning algorithm
Hyper-parameters

● Number k of clusters in k-nearest neighbors

 17

Machine learning algorithm

Hyper-parameters
● These parameters express “higher-level” properties of the model

such as its complexity or how fast it should learn. Hyper-
parameters are usually fixed before the actual training process
begins.

● Their values can strongly influence the performance and the
results of the machine learning algorithm application

● Examples: number of clusters in k-nearest neighbors

 18

Machine learning algorithm

Hyper-parameters
● Finding the best values for the hyper-parameters is a key point in

machine learning

● Usually, the the best practice is a grid search on all the possible
values (or most of them), on an independent subset

 19

Dataset arrangement

 20

Dataset arrangement

If you have a machine learning algorithm
already optimized (where there are no
hyper-parameters to tune), you have to split
the dataset into 2 subsets:

1 - a training set, used only to train the
algorithm
(usually the 80% of the available dataset)

2 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

 21

Dataset arrangement

If you have a machine learning algorithm
already optimized (where there are no
hyper-parameters to tune), you have to split
the dataset into 2 subsets:

1 - a training set, used only to train the
algorithm
(usually the 80% of the available dataset)

2 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

 VERY RARE
CASE!

 22

Dataset arrangement

But if you have a machine learning algorithm
to optimize (where you have to select
the best hyper-parameters), you
have to split the dataset into:

1 - a training set, used only to train the
algorithm (usually the 60% of the available
dataset)

2 - a validation set, used only to evaluate
the trained algorithm model and its
hyper-parameters (usually the 20% of
the available dataset)

3 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

Validation set

 23

Dataset arrangement

But if you have a machine learning algorithm
to optimize (where you have to select
the best hyper-parameters), you
have to split the dataset into:

1 - a training set, used only to train the
algorithm (usually the 60% of the available
dataset)

2 - a validation set, used only to evaluate
the trained algorithm model and its
hyper-parameters (usually the 20% of
the available dataset)

3 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

Validation set

 VERY COMMON
CASE!

 24

Dataset arrangement

Example, suppose you have an artificial neural network and you
have to decide its hyper-parameters (what number of hidden
layers and hidden units)

1 – choose a new configuration of
hyper-parameters, then train on the training set

2 – after training, evaluate your model by
applying it to the validation set

3 – if the evaluation on the validation set
led to sufficient accuracy (e.g. MCC >= 0.5),
apply the trained model to the test set

 – else: go back to point 1

Training set

Test set

complete
dataset

Validation set

 25

Dataset arrangement

IMPORTANT: THESE SUBSETS MUST
ALWAYS BE INDEPENDENT!!!

SO NO INTERSECTIONS!!!

A data intersection between these
subsets will completely invalidate
and corrupt your procedure

Training set

Test set

complete
dataset

Validation set

 26

Data engineering is often the key!

● Often the success of a machine learning algorithm is not the
algorithm, but the data engineering (or feature engineering)

● Often gathering data, integrating them, cleaning them and pre-
processing them might be the key for success

● Why? It's fundamental to add knowledge and expertise about
the domain, and to prepare a dataset “ready” to solve a
specific problem

● Often, for example, it's necessary to normalize the data into the
[0, 1] interval

Values in [0; 5000] Values in [0; 1]

 27

Machine learning tasks

 28

Machine learning tasks

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Reinforcement learning
● continuous interaction from the environment

 29

Machine learning tasks

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Example: face detection (Image from CreativeCommons.org)

 30

Machine learning tasks

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Example: gene expression data clustering
Activity levels of gene expression measured in lymphoma
patients
Cluster analysis determined three different subtypes
(where only two were known before), having different
 clinical outcomes

 31

Machine learning tasks

Reinforcement learning
● continuous interaction from the environment

Example: stock exchange data (Image from CreativeCommons.org)

 32

Machine learning tasks

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Reinforcement learning
● continuous interaction from the environment

WE FOCUS ON THIS
TODAY

 33

Machine learning dictionary
and problem definition

 34

Dictionary

Example: tumor dataset
● Cell samples were taken from tumors in breast cancer

patients before surgery, and imaged
● Tumors were excised
● Patients were followed to determine whether or not the

cancer recurred, and how long until recurrence or
disease free

● 32 real-valued variables per tumor.
● 2 variables that can be predicted:

– Outcome (R=recurrence, N=non-recurrence)
– Time (until recurrence, for R, time healthy, for N)

(c) Doina Precup

 35

Dictionary

Example: tumor dataset
● Columns are called input variables or features or attributes
● The outcome and time (which we are trying to predict) are

called output variables or targets
● A row in the table is called training example or instance
● The whole table is called dataset
● The problem of predicting the recurrence is called (binary)

classification
● The problem of predicting the time is called regression

(c) Doina Precup

 40

Overfitting

 41

Overfitting

Very important problem
● Overfitting happens when an algorithm adapts “too

much” to the training set, and so then performs very
badly in the validation set and in the test set

● The algorithm gets somehow “hallucinated” by the
training set

● E.g. suppose you train a robot to recognize plants, and
then it “thinks” that everything is a plant

Training: “This is a plant” Testing: “This is a plant” WRONG

 42

Overfitting

Very important problem
● An algorithm is well trained if it minimizes the error during

training and if it is able to generalize well in the validation set
and test set

● Some (not definitive) solutions:

● Held out approach (as we already said, divide dataset into 3
independent subsets: training set, validation set, test set)

● Regularization (penalization in the loss function for complex
models) [we won't see this here]

● More data

● Cross-validation

 43

Overfitting

Very important problem
● An algorithm is well trained if it minimizes the error during

training and if it is able to generalize well in the validation set
and test set

● Some (not definitive) solutions:

● Held out approach (as we already said, divide dataset into 3
independent subsets: training set, validation set, test set)

● Regularization (penalization in the loss function for complex
models) [we won't see this here]

● More data

● Cross-validation

THESE METHODS CAN
HELP CONTRASTING

OVERITTING

BUT THE CANNOT
COMPLETELY SOLVE THE

PROBLEM!

 44

Overfitting
Cross validation

● Choose a number of folds
(usually k=5)

● Divide the dataset (training
set and validation set,
excluding the test set) into k
folds

● For each ith fold (i=1,…,5):
– choose the ith fold as

validation set
– choose all the other folds

as training set
– train the model on the

training set and evaluate
it on the validation set

● Output: all the predictions
made for each element of
the dataset

validation

validation

validation

validation

validation

 48

How to choose an algorithm?

How to choose a programming language?

 49

Which machine learning algorithm to
choose?

Thumb-rule

Start with a simple algorithm!

If it works, great! You'll have all the parameters and features easily
under control.

If it does NOT work, good anyway. You'll have a weak classifier to
make comparison with other algorithms.

 50

How to evaluate the performance of a
machine learning algorithm?

 51

How to evaluate the performance of a
machine learning algorithm?

Confusion matrix:
 predicted positive predictive
negative

actual positive TP (true positives) FN (false
negatives)
actual negative FP (false positives) TN (true
negatives)

The Matthews correlation coefficient (MCC) is the only score which
takes into account all the 4 confusion matrix categories (TP, FN,
FP, TN).

 52

Which machine learning programming
languages?

Go with open source, open access, open science tools

- R (pro: easy to use, especially for beginners; cons: slow, and not
suitable for big data)

- Torch (pro: fast, libraries for deep learning; cons: complicated for
beginners)

- Python scikit-learn (pro: fast, libraries for many algorithms; cons:
complicated for beginners)

Avoid proprietary software (e.g. MATLAB)!
- you or your institution has to pay a license; if you write pieces of
code in that language, and then you have to change job, or
collaborate with someone who does not have the license, you will
not be able to use your code again!

 53

Session 2 - Practice
● 2a - Introduction to k-nearest neighbors (k-NN)
● 2b - Exercise in R. Usage of k-NN for binary classification

of cancer-related data

Outline

 54

k-nearest neighbors

 55

k-nearest neighbors algorithm

(c) Byclb.com

k-NN

● k nearest neighbors is a simple
algorithm that stores all
available cases and classifies
new cases by a majority vote
of its k neighbors. This
algorithms segregates
unlabeled data points into well
defined groups

 56

k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN

● k: hyper-parameter that represents
the number of neighbors to
consider

● The selection of k will determine
how well the data can be utilized
to generalize the results of the
kNN algorithm. A large k value has
benefits which include reducing
the variance due to the noisy data;
the side effect being developing a
bias due to which the learner
tends to ignore the smaller
patterns which may have useful
insights.

Example of k-NN classification.
The test sample (green circle)
should be classified either to the
first class of blue squares or to
the second class of red triangles.
If k = 3 (solid line circle) it is
assigned to the second class
because there are 2 triangles and
only 1 square inside the inner
circle. If k = 5 (dashed line circle)
it is assigned to the first class (3
squares vs. 2 triangles inside the
outer circle). (c) Wikipedia

 57

Machine learning algorithm
Hyper-parameters

● Number k of clusters in k-nearest neighbors

 65

k-nearest neighbors algorithm

Practical session with R

We are going to apply the k-nearest neighbors algorithm to
classify cancer data

Machine learning finds extensive usage in pharmaceutical industry
especially in detection of oncogenic (cancer cells) growth. R finds
application in machine learning to build models to predict the
abnormal growth of cells thereby helping in detection of cancer
and benefiting the health system.

Let’s see the process of building this model using kNN algorithm in
R Programming.

(c) Analytics Vidhya

 66

k-nearest neighbors algorithm

Practical session with R – 1, data collection
We will use a data set of 100 patients (created solely for the
purpose of practice) to implement the k-nn algorithm and thereby
interpreting results .The data set has been prepared keeping in
mind the results which are generally obtained from DRE exam.

The data set consists of 100 observations and 10 variables (out of
which 8 numeric variables and one categorical variable and is ID)
which are as follows: Radius, Texture, Perimeter, Area,
Smoothness,
 Compactness, Symmetry, Fractal dimension

The goal is to classify each instance into Benign or Malignant

The dataset file can be downloaded at:
www.bit.ly/prostate_cancer_DRE

(c) Analytics Vidhya

 67

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 1, data collection
Here's how this data table looks like:

 68

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 1, data collection
Here's how this data table looks like:

target column

 69

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, preparing the data

We have to read the dataset file

Suppose we have the data file in the data folder:
PATH_TO_DATA/prostate_cancer_DRE_exam_set.csv

prc_data <- read.csv("PATH_TO_DATA/prostate_cancer_DRE_exam_set.csv",
stringsAsFactors = FALSE) # read.csv() imports the required data set and saves it to
the prc data frame. stringsAsFactors = FALSE: helps to convert every character vector to a
factor wherever it makes sense.

str(prc_data) # We use this command to see whether the data is structured or not.

 70

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, preparing the data

head(prc_data) # to take a look to the first lines of the table

prc_data <- prc_data[-1] # removes the first variable(id) from the data set.

 71

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, preparing the data

prc_data <- prc_data[sample(nrow(prc_data)),] # we shuffle the rows, to remove
any possible rank-related patterns of data

table(prc_data$diagnosis_result) # it helps us to get the numbers of patients

 B M
38 62

 72

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, normalizing numeric data

This normalization is of paramount importance since the scale used for the values for each
variable might be different. The best practice is to normalize the data and transform all the
values to a common scale.

normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x))) }

The first variable in our data set (after removal of id) is ‘diagnosis_result’ which is not numeric
in nature. So, we start from 2nd variable. The function lapply() applies normalize() to each
feature in the data frame. The final result is stored to prc_n data frame using as.data.frame()
function

prc_data_norm <- as.data.frame(lapply(prc_data[2:9], normalize))

Let's check the normalization:

summary(prc_data_norm$radius)

 73

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, training set and test set

To simplify this exercise, we heuristically fix k=10, so we do not run any optimization of this
hyper-parameter. Because of this decision, we won't split the dataset into 3 subsets (training
set, validation set, and test set) as usually we would do, but we will split only into training set,
and test set.

We train our k-NN algorithm on training set and test it on test set. For this, we would divide
the data set into 2 portions in the ratio of 80% / 20% (assumed) for the training and test data
set respectively. You may use a different ratio altogether depending on the problem
requirement.

training_set_size <- 80
dataset_size <- dim(prc_data_norm)[1]

prc_data_train <- prc_data_norm[1:training_set_size,]
prc_data_test <- prc_data_norm[(training_set_size+1):dataset_size,]

Our target variable is ‘diagnosis_result’ which we have not included in our training and test
data sets.

prc_data_train_labels <- prc_data[1:training_set_size, 1]
prc_data_test_labels <- prc_data[(training_set_size+1):dataset_size, 1]

This code takes the diagnosis factor in column 1 of the prc data frame and on turn creates
prc_data_train_labels and prc_data_test_labels data frame.

 74

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 3, traning the model

Let's now train our model on the training set, and test it on the test data, through the knn()
function.

The knn () function needs to be used to train a model for which we need to install a package
‘class’. The knn() function identifies the k-nearest neighbors using Euclidean distance where k
is a user-specified number.

library(class)

K <- 10

prc_data_test_pred <- knn(train = prc_data_train, test = prc_data_test, cl =
prc_data_train_labels, k=K)

IMPORTANT: to choose the best value for the hyper-parameter k, we should use an
optimization procedure (training on training data; evaluate the model on the validation data;
select the model which led to the top performance in the validation data, and apply it to the
test data). Here, for simplicity, we select k=10, that is the square root of the number of
observations k = sqrt(100) = 10

prc_data_test_pred contains the targets predicted by k-NN for the test set

 75

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

We have built the model but we also need to check the accuracy of the predicted values in
prc_data_test_pred as to whether they match up with the known values in
prc_data_test_labels. To ensure this, we need to use the CrossTable() function available in the
package ‘gmodels’.

library(“gmodels”)

CrossTable(x=prc_data_test_labels, y=prc_data_test_pred, prop.chisq=FALSE)

The output will be something like this:

 76

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

The test data consisted of 35 observations. Out of which 5 cases have been accurately
predicted (TN->True Negatives) as Benign (B) in nature which constitutes 14.3%. Also, 16 out
of 35 observations were accurately predicted (TP-> True Positives) as Malignant (M) in nature
which constitutes 45.7%. Thus a total of 16 out of 35 predictions where TP i.e, True Positive in
nature.

There were no cases of False Negatives (FN) meaning no cases were recorded which actually
are malignant in nature but got predicted as benign. The FN’s if any poses a potential threat
for the same reason and the main focus to increase the accuracy of the model is to reduce
FN’s.

 77

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

There were 14 cases of False Positives (FP) meaning 14 cases were actually benign in nature
but got predicted as malignant.

The total accuracy of the model is 60 %((TN+TP)/35) which shows that there may be chances
to improve the model performance

 78

k-nearest neighbors algorithm

(c) Wikipedia

Practical session with R – 4, evaluate the model performance

When the prediction set is made of real value and there's not a fixed likelihood threshold to
compute the confusion matrix, the best evaluation score to use is the PRECISION-RECALL Area
Under the Curve (PR-AUC). This curve considers all the possible likelihood thresholds.

In our case, both the input dataset and the predictions are binary, so we can consider the
following scores.

The best (most useful and effective) score to use for a classification problem is the Matthews
correlation coefficient (MCC), because it is based upon the size of the 4 confusion matrix
categories.

 79

k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

We can compute the MCC score with this R function developed on Kaggle.com

 # Compute the Matthews correlation coefficient (MCC) score
 # Jeff Hebert 9/1/2016
 # Geoffrey Anderson 10/14/2016
mcc <- function (actual, predicted)
{
 TP <- sum(actual == 1 & predicted == 1)
 TN <- sum(actual == 0 & predicted == 0)
 FP <- sum(actual == 0 & predicted == 1)
 FN <- sum(actual == 1 & predicted == 0)

 sum1 <- TP+FP; sum2 <-TP+FN ; sum3 <-TN+FP ; sum4 <- TN+FN;
 denom <- as.double(sum1)*sum2*sum3*sum4
 if (any(sum1==0, sum2==0, sum3==0, sum4==0)) {
 denom <- 1
 }
 mcc <- ((TP*TN)-(FP*FN)) / sqrt(denom)
 return(mcc)
}

The results can be between -1 (worst prediction) and +1 (perfect prediction).

 80

k-nearest neighbors algorithm

Practical session with R – 4, evaluate the model performance

In our example, we have first to transform the “B” and “M” labels to 0s and 1s:

prc_data_test_labels_binary_TEMP <- replace(prc_data_test_labels,
prc_data_test_labels=="M", 1)
prc_data_test_labels_binary <- replace(prc_data_test_labels_binary_TEMP,
prc_data_test_labels=="B", 0)
prc_data_test_labels_binary <- as.numeric (prc_data_test_labels_binary)
prc_data_test_labels_binary

prc_data_test_pred_AS_CHAR <- as.character(prc_data_test_pred)

prc_data_test_pred_binary_TEMP <- replace(prc_data_test_pred_AS_CHAR,
prc_data_test_pred_AS_CHAR=="M", 1)

prc_data_test_pred_binary <- replace(prc_data_test_pred_binary_TEMP,
prc_data_test_pred_AS_CHAR=="B", 0)

prc_data_test_pred_binary <- as.numeric (prc_data_test_pred_binary)
prc_data_test_pred_binary

mcc(prc_data_test_labels_binary, prc_data_test_pred_binary)

The result is +0.59 (-1 <= MCC <= +1)

 81

k-nearest neighbors algorithm

Practical session with R – 5, implement optimization

Exercise for the audience: optimize the value of k

Steps:
- split the input dataset into training set, validation set, and test
set
- try different values of k (how?)
- choose the best model (how?)

http://www.bit.ly/prostate_cancer_DRE

 82

References

Books, papers, courses

Books:
- C. Bishop, “Pattern recognition and machine learning”,
Springer, 2006
- P. Baldi, “Machine learning: the bioinformatics approach”, MIT
Press, 2001

Papers:
- P. Domingos, “A few useful things to learn about machine
learning”, Communications of ACM, 2012

Videocourses:
- Andrew Ng, “Machine learning”, Coursera
 https://www.coursera.org/learn/machine-learning

 83

The end

You can find slides and exercise code on my website:

www.DavideChicco.it

For any question, doubt, or possible collaborations, please
contact me at:

 davide.chicco@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

