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Session 1 - Information and theory
● Introduction to machine learning

➢ what is machine learning?
➢ dataset arrangement
➢ supervised/unsupervised learning
➢ Overfitting
➢ machine learning programming languages and 

platforms (Torch, Python Theano, R)

Session 2 - Practice
● 2a - Introduction to k-nearest neighbors (k-NN)
● 2b - Exercise in R. Usage of k-NN for binary classification 

of cancer-related data

Outline
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What is machine learning?

What is machine learning?
(computational intelligence) 
(data mining) 
(pattern recognition)

artificial intelligence

machine
learning
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What is machine learning?

What is machine learning?
(computational intelligence) 
(data mining) 
(pattern recognition)

“[Machine Learning is the] 
field of study that gives 
computers the ability to learn 
without being explicitly 
programmed.”

(Arthur Samuel, 1954)
(c) Image from Toptal.com
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What is machine learning?

What is machine learning?
(computational intelligence) 
(data mining) 
(pattern recognition)

“a computer program is said to 
learn from experience E with 
respect to some task T and 
some performance measure P, if 
its performance on T, as 
measured by P, improves with 
experience E.”

(Tom Mitchell, 1997)
(c) Image from Toptal.com
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What is machine learning?

What is machine learning?
(computational intelligence) 
(data mining) 
(pattern recognition)

“Machine learning [is] the 
technology that enables 
computational systems to 
adaptively improve their 
performance with experience 
accumulated from the observed 
data”

(Yaser Abu-Mostafa, 2012)
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Learning from data

Machine learning example: series of number

1 2 4 8 16 32 …

what is the next number?
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Learning from data

Machine learning example: series of number

1 2 4 8 16 32 …

what is the next number?

64
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Learning from data

Machine learning example: series of number

1 2 4 8 16 32

what is the next number?

data
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Learning from data

Machine learning example: series of number

1 2 4 8 16 32

what is the next number?

data

task
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Learning from data

Machine learning example: series of number

1 2 4 8 16 32

what is the next number?

64

data

task

predictio
n
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Hyper-parameters
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Machine learning algorithm
Hyper-parameters

● These parameters express “higher-level” properties of the model 
such as its complexity or how fast it should learn.  
Hyperparameters are usually fixed before the actual training 
process begins.

● Their values can strongly influence the performance and the 
results of the machine learning algorithm application

● Examples: 
– Number k of clusters in k-nearest neighbors
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Machine learning algorithm
Hyper-parameters

● Number k of clusters in k-nearest neighbors
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Machine learning algorithm

Hyper-parameters
● These parameters express “higher-level” properties of the model 

such as its complexity or how fast it should learn.  Hyper-
parameters are usually fixed before the actual training process 
begins.

● Their values can strongly influence the performance and the 
results of the machine learning algorithm application

● Examples: number of clusters in k-nearest neighbors
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Machine learning algorithm

Hyper-parameters
● Finding the best values for the hyper-parameters is a key point in 

machine learning

● Usually, the the best practice is a grid search on all the possible 
values (or most of them), on an independent subset
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Dataset arrangement
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Dataset arrangement

If you have a machine learning algorithm
already optimized (where there are no
hyper-parameters to tune), you have to split 
the dataset into 2 subsets:

1 - a training set, used only to train the 
algorithm
(usually the 80% of the available dataset) 

2 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset
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Dataset arrangement

If you have a machine learning algorithm
already optimized (where there are no
hyper-parameters to tune), you have to split 
the dataset into 2 subsets:

1 - a training set, used only to train the 
algorithm
(usually the 80% of the available dataset) 

2 - a test set, used only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

 VERY RARE 
CASE! 
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Dataset arrangement

But if you have a machine learning algorithm
to optimize (where you have to select
the best hyper-parameters), you 
have to split the dataset into:

1 - a training set, used  only to train the 
algorithm (usually the 60% of the available
dataset) 

2 - a validation set, used  only to evaluate
the trained algorithm model and its 
hyper-parameters (usually the 20% of 
the available dataset)

3 - a test set, used  only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

Validation set
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Dataset arrangement

But if you have a machine learning algorithm
to optimize (where you have to select
the best hyper-parameters), you 
have to split the dataset into:

1 - a training set, used  only to train the 
algorithm (usually the 60% of the available
dataset) 

2 - a validation set, used  only to evaluate
the trained algorithm model and its 
hyper-parameters (usually the 20% of 
the available dataset)

3 - a test set, used  only to test the algorithm
(usually the 20% of the available dataset)

Training set

Test set

complete
dataset

Validation set

 VERY COMMON 
CASE!  
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Dataset arrangement

Example, suppose you have an artificial neural network and you 
have to decide its hyper-parameters (what number of hidden 
layers and hidden units)

1 – choose a new configuration of 
hyper-parameters, then train on the training set 

2 – after training, evaluate your model by 
applying it to the validation set

3 – if the evaluation on the validation set
led to sufficient accuracy (e.g. MCC >= 0.5),
apply the trained model to the test set

   – else: go back to point 1

Training set

Test set

complete
dataset

Validation set
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Dataset arrangement

IMPORTANT: THESE SUBSETS MUST 
ALWAYS BE INDEPENDENT!!!

SO NO INTERSECTIONS!!!

A data intersection between these
subsets will completely invalidate
and corrupt your procedure

Training set

Test set

complete
dataset

Validation set
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Data engineering is often the key!

● Often the success of a machine learning algorithm is not the 
algorithm, but the data engineering (or feature engineering)

● Often gathering data, integrating them, cleaning them and pre-
processing them might be the key for success

● Why? It's fundamental to add knowledge and expertise about 
the domain, and to prepare a dataset “ready” to solve a 
specific problem

● Often, for example, it's necessary to normalize the data into the 
[0, 1] interval

Values in [0; 5000] Values in [0; 1]
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Machine learning tasks



 28

Machine learning tasks

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Reinforcement learning
● continuous interaction from the environment
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Machine learning tasks

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Example: face detection (Image from CreativeCommons.org)
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Machine learning tasks

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Example: gene expression data clustering
Activity levels of gene expression measured in lymphoma
patients
Cluster analysis determined three different subtypes 
(where only two were known before), having different
 clinical outcomes
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Machine learning tasks

Reinforcement learning
● continuous interaction from the environment

Example: stock exchange data (Image from CreativeCommons.org)
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Machine learning tasks

Supervised learning
● we have training data with labels of the correct answers
● use training data to prepare the algorithm

Unsupervised learning
● no training data labels
● what to learn: interesting associations in the data
● often there is no single correct answer

Reinforcement learning
● continuous interaction from the environment

WE FOCUS ON THIS 
TODAY
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Machine learning dictionary 
and problem definition
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Dictionary

Example: tumor dataset
● Cell samples were taken from tumors in breast cancer 

patients before surgery, and imaged
● Tumors were excised
● Patients were followed to determine whether or not the 

cancer recurred, and how long until recurrence or 
disease free

● 32 real-valued variables per tumor.
● 2 variables that can be predicted:

– Outcome (R=recurrence, N=non-recurrence)
– Time (until recurrence, for R, time healthy, for N)

(c) Doina Precup
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Dictionary

Example: tumor dataset
● Columns are called input variables or features or attributes
● The outcome and time (which we are trying to predict) are 

called output variables or targets
● A row in the table is called training example or instance
● The whole table is called dataset
● The problem of predicting the recurrence is called (binary) 

classification
● The problem of predicting the time is called regression

(c) Doina Precup
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Overfitting
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Overfitting

Very important problem
● Overfitting happens when an algorithm adapts “too 

much” to the training set, and so then performs very 
badly in the validation set and in the test set

● The algorithm gets somehow “hallucinated” by the 
training set

● E.g. suppose you train a robot to recognize plants, and 
then it “thinks” that everything is  a plant

Training: “This is a plant” Testing: “This is a plant” WRONG
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Overfitting

Very important problem
● An algorithm is well trained if it minimizes the error during 

training and if it is able to generalize well in the validation set 
and test set

● Some (not definitive) solutions:

● Held out approach (as we already said, divide dataset into 3 
independent subsets: training set, validation set, test set)

● Regularization (penalization in the loss function for complex 
models) [we won't see this here]

● More data

● Cross-validation
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Overfitting

Very important problem
● An algorithm is well trained if it minimizes the error during 

training and if it is able to generalize well in the validation set 
and test set

● Some (not definitive) solutions:

● Held out approach (as we already said, divide dataset into 3 
independent subsets: training set, validation set, test set)

● Regularization (penalization in the loss function for complex 
models) [we won't see this here]

● More data

● Cross-validation

THESE METHODS CAN 
HELP CONTRASTING 

OVERITTING

BUT THE CANNOT 
COMPLETELY SOLVE THE 

PROBLEM!
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Overfitting
Cross validation

● Choose a number of folds 
(usually k=5)

● Divide the dataset (training 
set and validation set, 
excluding the test set) into k 
folds

● For each ith fold (i=1,…,5):
– choose the  ith fold as 

validation set
– choose all the other folds 

as training set
– train the model on the 

training set and evaluate 
it on the validation set

● Output: all the predictions 
made for each element of 
the dataset

validation

validation

validation

validation

validation
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How to choose an algorithm?

How to choose a programming language?
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Which machine learning algorithm to 
choose?

Thumb-rule

Start with a simple algorithm!

If it works, great! You'll have all the parameters and features easily 
under control.

If it does NOT work, good anyway. You'll have a weak classifier to 
make comparison with other algorithms.
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How to evaluate the performance of a 
machine learning algorithm?
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How to evaluate the performance of a 
machine learning algorithm?

Confusion matrix:
  predicted positive    predictive 
negative

actual positive     TP (true positives)     FN (false 
negatives)
actual negative     FP (false positives)      TN (true 
negatives)

The Matthews correlation coefficient (MCC) is the only score which 
takes into account all the 4 confusion matrix categories (TP, FN, 
FP, TN).
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Which machine learning programming 
languages?

Go with open source, open access, open science tools

- R (pro: easy to use, especially for beginners; cons: slow, and  not 
suitable for big data)

- Torch (pro: fast, libraries for deep learning; cons: complicated for 
beginners)

- Python scikit-learn (pro: fast, libraries for many algorithms; cons: 
complicated for beginners)

Avoid proprietary software (e.g. MATLAB)!
- you or your institution has to pay a license; if you write pieces of 
code in that language, and then you have to change job, or 
collaborate with someone who does not have the license, you will 
not be able to use your code again!
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Session 2 - Practice
● 2a - Introduction to k-nearest neighbors (k-NN)
● 2b - Exercise in R. Usage of k-NN for binary classification 

of cancer-related data

Outline
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k-nearest neighbors
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k-nearest neighbors algorithm

(c) Byclb.com

k-NN

● k nearest neighbors is a simple 
algorithm that stores all 
available cases and classifies 
new cases by a majority vote 
of its k neighbors. This 
algorithms segregates 
unlabeled data points into well 
defined groups
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k-nearest neighbors algorithm

(c) Analytics Vidhya

k-NN

● k: hyper-parameter that represents 
the number of neighbors to 
consider

● The selection of k will determine 
how well the data can be utilized 
to generalize the results of the 
kNN algorithm. A large k value has 
benefits which include reducing 
the variance due to the noisy data; 
the side effect being developing a 
bias due to which the learner 
tends to ignore the smaller 
patterns which may have useful 
insights.

Example of k-NN classification. 
The test sample (green circle) 
should be classified either to the 
first class of blue squares or to 
the second class of red triangles. 
If k = 3 (solid line circle) it is 
assigned to the second class 
because there are 2 triangles and 
only 1 square inside the inner 
circle. If k = 5 (dashed line circle) 
it is assigned to the first class (3 
squares vs. 2 triangles inside the 
outer circle). (c) Wikipedia
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Machine learning algorithm
Hyper-parameters

● Number k of clusters in k-nearest neighbors
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k-nearest neighbors algorithm

Practical session with R

We are going to apply the  k-nearest neighbors algorithm to 
classify cancer data

Machine learning finds extensive usage in pharmaceutical industry 
especially in detection of oncogenic (cancer cells) growth. R finds 
application in machine learning to build models to predict the 
abnormal growth of cells thereby helping in detection of cancer 
and benefiting the health system.

Let’s see the process of building this model using kNN algorithm in 
R Programming. 

(c) Analytics Vidhya
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k-nearest neighbors algorithm

Practical session with R – 1, data collection
We will use a data set of 100 patients (created solely for the 
purpose of practice) to implement the k-nn algorithm and thereby 
interpreting results .The data set has been prepared keeping in 
mind the results which are generally obtained from DRE exam.

The data set consists of 100 observations and 10 variables (out of 
which 8 numeric variables and one categorical variable and is ID) 
which are as follows:    Radius,     Texture,    Perimeter,     Area,     
Smoothness,
    Compactness,     Symmetry,    Fractal dimension

The goal is to classify each instance into Benign or Malignant

The dataset file can be downloaded at: 
www.bit.ly/prostate_cancer_DRE 

(c) Analytics Vidhya
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 1, data collection
Here's how this data table looks like:
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 1, data collection
Here's how this data table looks like:

target column
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, preparing the data

We have to read the dataset file

Suppose we have the data file in the data folder:
PATH_TO_DATA/prostate_cancer_DRE_exam_set.csv

prc_data <- read.csv("PATH_TO_DATA/prostate_cancer_DRE_exam_set.csv", 
stringsAsFactors = FALSE)    # read.csv() imports the required data set and saves it to 
the prc data frame. stringsAsFactors = FALSE: helps to convert every character vector to a 
factor wherever it makes sense.

str(prc_data)    # We use this command to see whether the data is structured or not.
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, preparing the data

head(prc_data)    # to take a look to the first lines of the table

prc_data <- prc_data[-1]    # removes the first variable(id) from the data set.
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, preparing the data

prc_data <- prc_data[sample(nrow(prc_data)),]    # we shuffle the rows, to remove 
any possible rank-related patterns of data 

table(prc_data$diagnosis_result)    # it helps us to get the numbers of patients

  B        M
38 62
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, normalizing numeric data

This normalization is of paramount importance since the scale used for the values for each 
variable might be different. The best practice is to normalize the data and transform all the 
values to a common scale.

normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x))) } 

The first variable in our data set (after removal of id) is ‘diagnosis_result’ which is not numeric 
in nature. So, we start from 2nd variable. The function lapply() applies normalize() to each 
feature in the data frame. The final result is stored to prc_n data frame using as.data.frame() 
function

prc_data_norm <- as.data.frame(lapply(prc_data[2:9], normalize))

Let's check the normalization:

summary(prc_data_norm$radius)
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 2, training set and test set

To simplify this exercise, we heuristically fix k=10, so we do not run any optimization of this 
hyper-parameter. Because of this decision, we won't split the dataset into 3 subsets (training 
set, validation set, and test set) as usually we would do, but we will split only into training set, 
and test set.

We train our k-NN algorithm on training set and test it on test set. For this, we would  divide 
the data set into 2 portions in the ratio of 80% / 20% (assumed) for the training and test data 
set respectively. You may use a different ratio altogether depending on the problem 
requirement.

training_set_size <- 80
dataset_size <- dim(prc_data_norm)[1]

prc_data_train <- prc_data_norm[1:training_set_size,]
prc_data_test <- prc_data_norm[(training_set_size+1):dataset_size,]

Our target variable is ‘diagnosis_result’ which we have not included in our training and test 
data sets.

prc_data_train_labels <- prc_data[1:training_set_size, 1]
prc_data_test_labels <- prc_data[(training_set_size+1):dataset_size, 1] 

This code takes the diagnosis factor in column 1 of the prc data frame and on turn creates 
prc_data_train_labels and prc_data_test_labels data frame.
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 3, traning the model

Let's now train our model on the training set, and test it on the test data, through the knn() 
function.

The knn () function needs to be used to train a model for which we need to install a package 
‘class’. The knn() function identifies the k-nearest neighbors using Euclidean distance where k 
is a user-specified number.

library(class)

K <- 10

prc_data_test_pred <- knn(train = prc_data_train, test = prc_data_test, cl = 
prc_data_train_labels, k=K)

IMPORTANT: to choose the best value for the hyper-parameter k, we should use an 
optimization procedure (training on training data; evaluate the model on the validation data; 
select the model which led to the top performance in the validation data, and apply it to the 
test data). Here, for simplicity, we select k=10, that is the square root of the number of 
observations k = sqrt(100) = 10

prc_data_test_pred contains the targets predicted by k-NN for the test set
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

We have built the model but we also need to check the accuracy of the predicted values in 
prc_data_test_pred as to whether they match up with the known values in 
prc_data_test_labels. To ensure this, we need to use the CrossTable() function available in the 
package ‘gmodels’.

library(“gmodels”)

CrossTable(x=prc_data_test_labels, y=prc_data_test_pred, prop.chisq=FALSE)

The output will be something like this:
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

The test data consisted of 35 observations. Out of which 5 cases have been accurately 
predicted (TN->True Negatives) as Benign (B) in nature which constitutes 14.3%. Also, 16 out 
of 35 observations were accurately predicted (TP-> True Positives) as Malignant (M) in nature 
which constitutes 45.7%. Thus a total of 16 out of 35 predictions where TP i.e, True Positive in 
nature.

There were no cases of False Negatives (FN) meaning no cases were recorded which actually 
are malignant in nature but got predicted as benign. The FN’s if any poses a potential threat 
for the same reason and the main focus to increase the accuracy of the model is to reduce 
FN’s.
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

There were 14 cases of False Positives (FP) meaning 14 cases were actually benign in nature 
but got predicted as malignant.

The total accuracy of the model is 60 %( (TN+TP)/35) which shows that there may be chances 
to improve the model performance
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k-nearest neighbors algorithm

(c) Wikipedia

Practical session with R – 4, evaluate the model performance

When the prediction set is made of real value and there's not a fixed likelihood threshold to 
compute the confusion matrix, the best evaluation score to use is the PRECISION-RECALL Area 
Under the Curve (PR-AUC). This curve considers all the possible likelihood thresholds.

In our case, both the input dataset and the predictions are binary, so we can consider the 
following scores.

The best (most useful and effective) score to use for a classification problem is the Matthews 
correlation coefficient (MCC), because it is based upon the size of the 4 confusion matrix 
categories.
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k-nearest neighbors algorithm

(c) Analytics Vidhya

Practical session with R – 4, evaluate the model performance

We can compute the MCC score with this R function developed on Kaggle.com

  # Compute the Matthews correlation coefficient (MCC) score
  # Jeff Hebert 9/1/2016
  # Geoffrey Anderson 10/14/2016 
mcc <- function (actual, predicted)
{
  TP <- sum(actual == 1 & predicted == 1)
  TN <- sum(actual == 0 & predicted == 0)
  FP <- sum(actual == 0 & predicted == 1)
  FN <- sum(actual == 1 & predicted == 0)

  sum1 <- TP+FP; sum2 <-TP+FN ; sum3 <-TN+FP ; sum4 <- TN+FN;
  denom <- as.double(sum1)*sum2*sum3*sum4 
  if (any(sum1==0, sum2==0, sum3==0, sum4==0)) {
    denom <- 1
  }
  mcc <- ((TP*TN)-(FP*FN)) / sqrt(denom)
  return(mcc)
}

The results can be between -1 (worst prediction) and +1 (perfect prediction).
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k-nearest neighbors algorithm

Practical session with R – 4, evaluate the model performance

In our example, we have first to transform the “B” and “M” labels to 0s and 1s:

prc_data_test_labels_binary_TEMP <- replace(prc_data_test_labels, 
prc_data_test_labels=="M", 1)
prc_data_test_labels_binary <- replace(prc_data_test_labels_binary_TEMP, 
prc_data_test_labels=="B", 0)
prc_data_test_labels_binary <- as.numeric (prc_data_test_labels_binary)
prc_data_test_labels_binary

prc_data_test_pred_AS_CHAR <- as.character(prc_data_test_pred)

prc_data_test_pred_binary_TEMP <- replace(prc_data_test_pred_AS_CHAR, 
prc_data_test_pred_AS_CHAR=="M", 1)

prc_data_test_pred_binary <- replace(prc_data_test_pred_binary_TEMP, 
prc_data_test_pred_AS_CHAR=="B", 0)

prc_data_test_pred_binary <- as.numeric (prc_data_test_pred_binary)
prc_data_test_pred_binary

mcc(prc_data_test_labels_binary, prc_data_test_pred_binary)

The result is +0.59 (-1 <= MCC <=  +1 )
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k-nearest neighbors algorithm

Practical session with R – 5, implement optimization

Exercise for the audience: optimize the value of k

Steps:
- split the input dataset into training set, validation set, and test 
set
- try different values of k (how?)
- choose the best model (how?)

http://www.bit.ly/prostate_cancer_DRE
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The end

You can find slides and exercise code on my website:
 

www.DavideChicco.it 

For any question, doubt, or possible collaborations, please 
contact me at:

  davide.chicco@gmail.com
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