Detecting variants in DNA sequencing data

MBP Bioinformatics Tech Talk

Jeff Bruce, PhD

jbruce@uhnresearch.ca

Brief Overview: Sequencing and Alignment

Brief Overview: Sequencing and Alignment

Sequence Alignment/Map (SAM) Binary representation of SAM = BAM

Brief Overview: Integrative Genomics Viewer

🗯 IGV 2.1	File View Tracks Regions	Help			A 49	∦ ♦ 100% • Me	on 1:39 PM Q 📰
Human hg19	Load from File Load from URL Load from Server Load from DAS	 chr8:98,654,40 a a b chr8:12, a 	7-98,744,488 Co		a21.3 a221 a223	- a232 a2411 a2413	a2422 a243
	New Session Open Session Save Session	98,680 kb	98,700 kb	127 kb	38,740 kb	38,760 kb	98,780 kt
	Load Genome from File Load Genome from URL Import Genome Remove Imported Genomes	1			1 1		
	Save Image						
	Run Batch Script						
	Run igvtools						
	Exit						

http://www.broadinstitute.org/igv/

Brief Overview: Integrative Genomics Viewer (IGV)

p13.2 p13.1	p12	p11.2	p11.1	q11.2	q12 q21	.1 q21.31	q21.33	q22	q23.1 q23.	3 q24.2	q25.1	q25.3
43,093,000 bp 	43,093,200 bp I		43,093,400 bp 	43,093, 	1,7 600 bp 	32 bp 43,093,800 bp I	43,094,0	00 bp	43,094,200 bp 		43,094,400 bp 	43,094,
743]												
									•			
				€ < <				₹ ₹		 4 4 		<

Brief Overview: HPC/Linux/command line

- Some HPC options in Toronto/Ontario
 - Mordor, HPC4Health, SciNet, SickKids HPF, SharkNet
- Cloud HPC options
 - <u>AWS (amazon)/Google cloud/Microsoft Azure</u>
 - <u>Cancer Genomics Cloud</u>
 - <a>FireCloud (broad institute)
- Why use command-line tools for computational biology?
 - The field is always changing so we need tools that are:
 - *Relatively* simple/quick/inexpensive to create
 - Open source/easily modifiable
 - Distributable across HPC cluster/cloud nodes
 - Lightweight and portable

Brief Overview: HPC/Linux/command line

Tools to access remote HPC clusters

• MacOS and Linux:

• Windows: <u>PuTTY</u>

Windows PowerShell

Windows PowerShell Windows PowerShell Copyright (C) Microsoft Corporation. All rights reserved. PS C:\Users\chris> ssh chris@localhost chris@localhost's password:

Terminology:

- Variant: Any genomic sequence that differs from a given reference
- Germline Variant: Inherited; present in all* of the cells of the individual
- Somatic Variant: Variants that are not inherited or passed on to offspring through the germline. In cancer, these are tumour specific

• Mutation:

- Germline Based on population frequency (<1% of a given population)
- The physical event resulting in a change to the genome
- Sometimes used Interchangeably with "variant"

• Polymorphism:

• Germline variants present in >1% of the population

* Or a large proportion in the case of mosaicism

Types of Variants

Types of Variants

Meyerson et al. Nat Rev Genet. 2010 Oct;11(10):685-96.

Sequencing Techniques

Yes

* With Caveats

Challenges for variant detection:

• Low variant read proportion:

- Depth of sequencing
- Normal contamination
- Subclonality
- Overlapping copy-number variants
- Difficult read mapping
- Sources of false positives:
 - DNA damage due to processing
 - PCR errors
 - Sequencing errors
 - Mapping artifacts
- Sources of false negatives:
 - Poor mapping regions
 - Depth of sequencing
 - Local error rate
 - Variant complexity and size

Chromosome 2	
10.09755 mb	10.09757 mb
10.09756	s mb 10.09758 mb
G C C A C T G C G A G G C T G G	G G C T C C C C A G C G G C C G C C A G C G

Clonal Mutation

Challenges for variant detection:

- Low variant read proportion:
 - Depth of sequencing
 - Normal contamination
 - Subclonality
 - Overlapping copy-number variants
 - Difficult read mapping

• Sources of false positives:

- DNA damage due to storage and processing
- PCR errors
- Sequencer errors
- Mapping artifacts
- Sources of false negatives:
 - Poor mapping regions
 - Depth of sequencing
 - Local error rate
 - Variant complexity and size

Nucleic Acids Research 45(20) · September 2017

Challenges for variant detection:

- Low variant read proportion:
 - Depth of sequencing
 - Normal contamination
 - Subclonality
 - Overlapping copy-number variants
 - Difficult read mapping
- Sources of false positives:
 - DNA damage due to processing
 - PCR errors
 - Sequencing errors
 - Mapping artifacts

Sources of false negatives:

- Poor mapping regions
- Depth of sequencing
- Local error rate
- Variant complexity and size

These challenges, or "priors" lend themselves to the application of Bayesian statistics

evidence

Robinson, et al. Cancer Research 2017

wikipedia.org

Some strategies to remove/limit errors

• Indel realignment (Local/genome-wide)

chr9 \$ chr9:2,014,538-2	2,014,650 Go 👚 ৰ 🕨 🖗 🔲 💥 💭				
p24.2 p24.1 p23 p22.3 p22.1	p21.3 p21.2 p21.1 p13.3 p13.2 p12	p11.2 p11.1 q12	q13 q21.11 q21.13 q21.2 q21.32 q2	1.33 q22.2 q22.32 q22.33 q31.1 q31.2 q31.3	q32 q33.1 q33.2 q33.3 q34.11 q34.13 q34.3
•			114 bp		-
2,014,540 bp	2,014,560 bp	2,014,580 bp	2,014,600 bp	2,014,620 bp	2,014,640 bp
BAM file from TCGA	G A C A G A T T T G G C A G G A A C G T D L A G F R D R F G R N	T T C T T T G T G C C G C C T C C F F F V P A S S L C P P P F V L C A R L	C C T T T T C T A T T T T T T T T T T T	T T T T A C C T G G A A T A G G G G G C A F F T W N R G Q F L P G I G G G	G A T T T A T A A T G A C A G C C T T A G C D U Y N D S L R R F I M T A L C
p. 19					
				A A T	
BAM after IndelRealignment					

Some strategies to remove/limit errors

- Indel realignment (Local/genome-wide)
- Duplicate-read marking/filtering

***** = sequencing error propagated in duplicates

Some strategies to remove/limit errors

- Indel realignment (Local/genome-wide)
- Duplicate-read marking/filtering
- Base quality recalibration
- Joint calling (germline)
- Panel of Normals (somatic)

SNV detection algorithm example: MuTect

SNV detection algorithm example: MuTect

 M_0 : reference model, alt allele is due to error M_1 : variant model, alt allele is a true variant

Cibulskis et al. Nature Biotechnology 2013

Practical application example: MuTect v.1.1.4

Available Parameters:

Example Command:

module load mutect/1.1.4
module load igenome-human/hg19

java -Djava.io.tmpdir=./tmp/ -Xmx8g -jar \$mutect_dir/muTect-1.1.4.jar --analysis_type MuTect \
 --enable_extended_output --fraction_contamination 0.02 -dt NONE -L Interval.bed --reference_sequence \$REF \
 --input_file:normal /path/to/normal/file.bam --input_file:tumor /path/to/tumour/file.bam \
 --out /path/to/output.call_stats --vcf /path/to/output.vcf --coverage_file /path/to/output_coverage.wig.txt

Combining tumor genome simulation with crowdsourcing to benchmark somatic singlenucleotide-variant detection

powered by Sage Bionetworks

Ewing ... Boutros et al., ICGC-TCGA Network Nature Methods volume 12, pages 623–630 (2015)

Winner: MuTect – Broad Institute

Combining tumor genome simulation with crowdsourcing to benchmark somatic singlenucleotide-variant detection

powered by Sage Bionetworks

Ewing ... Boutros et al., ICGC-TCGA Network Nature Methods volume 12, pages 623–630 (2015)

Name	Entity ID	Team	# True Positives	# False Positives	Recall	Precision	F-score
MuTect - L10	syn2343084	Broad SMC	3421	57	0.967204	0.983611	0.975339
MuTect - Stock	syn2343082	Broad SMC	3431	547	0.970031	0.862494	0.913107

powered by Sage Bionetworks

Combining tumor genome simulation with crowdsourcing to benchmark somatic singlenucleotide-variant detection

Ewing ... Boutros et al., ICGC-TCGA Network Nature Methods volume 12, pages 623–630 (2015)

"...and in subclonality, an ensemble of pipelines outperforms the best individual pipeline in all cases"

Tumor	Cell line	Number of somatic SNVs	Cellularity (%)	Subclone VAFs
In silico 1	HCC1143 BL	3,537	100	N/A
In silico 2	HCC1954 BL	4,332	80	N/A
In silico 3	HCC1143 BL	7,903	100	50%, 33%, 20%

ICGC-TCGA DREAM Mutatio	on Ca	alling challenge										Q	Sig
D This site uses Cookies to enhance your exp	perienc	e and to analyze our traffic.	Using Synar	ose me	eans that you	u agree with ou	ır cookie poli	icy. <u>LEARN M</u>		к			
ynapse ID: syn312572 ⑦ Storage Loca	ation: Sy	ynapse Storage									🌣 Projec	t Settings 🗸	Wiki To
Wiki ⑦ Files ⑦ Disc	cussior	า 🕐											
		9 Londorbon	rdc										
ICGC-TCGA DREAM Mutation Calling challenge	~	o. Leauer Dua	TUS			<i>"</i> ΔΛ/	o will k	roon los	dorho	ards or	oon inc	lofinito	ly to
1. Registration	~	D	•									,	iy tu
DREAM8 Challenges Official Rules		Participation	n Ove	rvie	ew	allo	w rapi	d comp	arison	of met	hods		
2. News						-							
3. Data Description	~	Overall Particip	ation										
3.1 Synthetic Tumours		-											
4. Data Access	~	Participants		Count	t								
4.1 Gene Torrent download for local		Total Challenge Parti	cipants	539									
compute		ICGC DACO Approved P	articipants	110									
4.2 Using Google Cloud													
4.3 Gene Torrent Client Installation in Amazon EC2		Synthetic Tumo	urs										
4.4 S3 based download from Bionimbus			SNV		SNV	SNV	SNV	SV	SV/Teams	SV	SV/Teams	INDEL	INDEL
5. Comparing Algorithms Performance		Tumour	Submiss	sions	Teams	Submissions	Teams	Submissions	(Challenge	Submissions	(Post	Submissions	Teams
6. Important Dates		Turriour	(Challer	nge	(Challenge	(Post	(Post	(Challenge	Eligible)	(Post	Challenge)	(Challenge	(Challen
			Eligible)	Eligible)	Challenge)	Challenge)	Eligible)	0 ,	Challenge)	3-7	Eligible)	Eligible)

https://www.synapse.org/#!Synapse:syn312572/wiki/61509

Small (SNV/Indel) Variant Annotation

Purpose

• To aid in the interpretation of variants

Annotations

- Classification (Missense, frameshift etc.)
- Predicted amino acid change
- Predicted impact (ex. SIFT, Polyphen)
- Occurrence in public databases (dbSNP, COSMIC, ExAC, Gnomad)
- +++

Some available tools:

- Ensembl Variant Effect Predictor (<u>VEP</u>)
- <u>Annovar</u>
- Oncotator

Structural variants affecting insert size: Deletions

https://software.broadinstitute.org/software/igv/interpreting_insert_size

Structural variants affecting insert size: Insertions

p13.2 p13.1 p1	2 p11.2 p11.1 q1	112 q12 q21.1 q21.31 q2	1.33 q22 q23.1 q2	3.3 q24.2 q24.3 q25.1 q
		3,256 bp		
1	18,007,000 bp 	18,008,000 bp	1	18,009,000 bp
		-		
	LRRC48	LRRC48		
<u> </u>	LRRC48	LRRC48		
	LRRC48	LRRC48	 96.97	
	LRRC48	LRRC48	< < < < < < < < < < < < < < < < < < <	
	LRRC48	LRRC48	< < < < < < < < < < < < < < < < < < <	
	LRRC48	LRRC48	< < < < < 6697	
	LRRC48	LRRC48 000241F_Reverse:1572600_16823252:1839011	< < < < < < < < < < < < < < < < < < <	
	LRRC48	LRRC48 000241F_Revense:1572600_16823252:1839011	< < < < < < < < < < < < < < < < < < <	
	LRRC48	LRRC48 000241F_Revense:1572600_16823252:1839011	5 5 5 5 5 5 5 96.97	
	LRRC48	LRRC48	6.97	
	LRRC48	LRRC48		
	LRRC48	LRRC48	< < < < < < < < < < < < < < < < < < <	
	LRRC48	LRRC48 000241F_Reverse:1572600_16823252:1839011	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

Note: The maximum size of an insertion detectable by variant bases Is limited by read length

The maximum detectable size is approximately equal to:

read length/2 <- pushing it</pre>

Pacbio long-reads https://twitter.com/infoecho/

https://software.broadinstitute.org/software/igv/interpreting_insert_size

Structural Variants: Insertions

Note: The maximum size of an insertion detectable by insert size anomaly is limited by the size of the fragments.

They must be long enough to span the insertion and include sequences on both ends that are mapped to the reference.

The maximum detectable size is approximately equal to:

Fragment length - (2x read length)

Detection of this event is therefore more likely with larger fragment libraries, such as Illumina mate-pair (not paired-end) and SOLID.

https://software.broadinstitute.org/software/igv/interpreting_insert_size

Structural Variants affecting mapped-read direction:

Inverted Duplication:

Translocation (intra chr):

Tandem Duplication:

Inversion:

Structural variant caller Performance varies depending on SV type

Kosugi et al. Genome Biology 2019

Structural Variant Annotation

Purpose

• To aid in the interpretation of variants

Annotations

- Classification (Deletion, translocation, inverted translocation etc.)
- Genes/regions affected
- Predicted amino acid change
- +++

• Some available tools:

- <u>MAVIS</u>
- <u>SVAnnotator</u>

Structural Variant Annotator Example: MAVIS

erging, > Clusters breakpoints and SVs the same or multiple tools

nnotation, > Annotates SV with genes, somatic/germline status, AA effect etc.

alidation, and

> Performs in-bam validation to further polish/filter results

chr19

llustration of

http://mavis.bcgsc.ca

Μ

Α

Structural Variant Annotator Example: MAVIS

*Adding additional callers appears to improve structural variant detection as well

Reisle et al. Bioinformatics 2019

Challenges facing modern day small variant calling algorithms: Low variant allele frequencies (VAF)

Subclonal Mutations

http://www.cs.carleton.edu/faculty/loesper/research.html

Apoptosis Apoptotic bodies Point mutations Necrosis Necrosis Rearrangements CH₃

Cell-Free DNA

Nature Reviews Cancer volume17, pages223–238 (2017)

Safe

à.

Secretion

4

Methylation

Exosomal DNA

changes

CH.

JORDE -

Detecting rare variants using unique molecular indices and duplex sequences

Challenges facing modern day small variant calling algorithms: **Difficult to align regions**

Long Reads from Pacbio

https://www.10xgenomics.com/solutions/genome/

Nature plants 2015 DOI:10.1038/nplants.2015.169

Questions?

Break

Hands on Exercise

Practical Exercise: Calling Somatic SNVs and Indels

Getting started:

- I have e-mailed the group a link with the necessary files: also Here
- Those with access to Mordor: scp (copy) these data to a directory of your choosing
- Those **without** access to Mordor: pair up with a) a user with access or b) another user without access. I will provide a laptop and log you in

• Your task:

- 1) Alter the two bash scripts in the ~/scripts/ directory to correspond with the location of the files you are processing
- 2) Submit these jobs to the cluster (ex. qsub runMutect2_mordor.sh)
- 3) Compare the resulting final output from each tool hint: final Mutect2 vcf has 'filtered' in the file name final Strelka vcfs have 'passed.somatic' in the file name
- 4) Find the two variants that were found by one tool and not by the other
- 5) Load the two provided BAM files into IGV and take a snapshot of these two loci

Bonus: Why do you think one tool did not report each of these?

Practical Exercise: Calling Somatic SNVs and Indels

- Useful Linux Commands:
 - Change directory: cd Ex: cd ./a_subdirectory
 - Go back one directory level: **cd** .../
 - List files in current directory: **ls** or **ll**
 - View the contents of a file: cat
 - Edit a file on the cluster: nano or vim Ex: nano runMutect2_mordor.sh

Thanks!

