Introduction to Proteogenomics

MBP Tech Talk 2019-12-29

Lydia Liu lydia.liu@mail.utoronto.ca

Outline

Part 1:

- Why Proteogenomics
- What you Need for Proteogenomics
- Typically Proteogenomics Analyses

Part 2:

- Your questions
- What gets sweeped under the rug
- CPTAC resources

Why Proteogenomics?

Why Proteogenomics

• Mutational profiles is only one of the determinants of phenotype

OPINION

Clinical potential of mass spectrometry-based proteogenomics

Bing Zhango, Jeffrey R. Whiteaker, Andrew N. Hoofnagle, Geoffrey S. Baird, Karin D. Rodland and Amanda G. Paulovich

Why Proteogenomics

OPINION

Clinical potential of mass spectrometry-based proteogenomics

Bing Zhango, Jeffrey R. Whiteaker, Andrew N. Hoofnagle, Geoffrey S. Baird, Karin D. Rodland and Amanda G. Paulovich

Why Proteogenomics

Modified From: https://abeon-hosting.com/image-post/635-animal-cell-unlabeled-1.jpg.html Sinha A. et al. Cancer Cell (2019)

20,393 Genes

Whole-Genome Sequencing

RNA-sequencing

104,763 Transcripts

Mass Spectrometry

> 1,000,000 Protein Isoforms

What do you need to do proteogenomics?

What you need for proteogenomics

- Proteomics Data
- Genomics Data
- Transcriptomics Data
- Other Data
 - Clinical annotation
 - Metabolomics
 - Cytometry
 - Hi-C

- Patient sample
 - Tumour
 - Adjacent normal
 - Blood normal
- Cell line / Organoid
- Model organism
- PDX

Proteomics Data

- Shotgun proteomics
- Phosphoproteomics
- Targeted proteomics

	880530	938230	•••	2059600
	÷	÷	۰.	:
P =	1988200	NA		1226300
	:	:	۰.	:
	NA	•••	NA	6716200

~6,000 × N

Genomics Data

- Targeted Sequencing
- Whole Exome Sequencing
- Whole Genome Sequencing

Types of Variants

- Somatic or Germline
- Coding / Noncoding
- Driver Analysis
- Chromothripsis
- Kataegis
- Variant allele frequency
- Telomere length
- Mitochondrial mutations

Transcriptomic Data

- RNA Microarray
- RNA-sequencing
- Single-cell RNA-sequencing

	237	3549	•••	4583
	:	:	۰.	÷
T =	1786	345	•••	9
	:	:	•	:
	317		1247	7823

~20,000 × N

- Somatic coding SNVs, Indels
- Assembled transcripts
- Fusion genes
- Circular RNAs

Other Data

- Clinical annotation
- MicroRNA
- Metabolomics
- Epigenomics
 - DNA Methylation
 - Histone Acetylation
- Cytometry
- Hi-C

What do proteogenomics studies do?

Omio	S	Int	egi	rati	ion											
		Gen	omics				Franscri	ptomics	8			Proteor	nics			
	D			D			<u>}</u>	АААА АААА АААА				0 100 000 0 20 00 00 0 20 00 00	8 08 8 08 8 08 8 08 8 08 8 08 8 08			
M =	: 0 : 0 :	: 1 : 	··. · 0 ·	: 0 : 0 :	T =	237 : 1786 : 317	3549 : 345 :	···· ··· ··· 1247	4583 : 9 : 7823	P =	[880530 [: 1988200 [: NA	938230 : NA : 	···· ··· ··· NA	2059600 : 1226300 : 6716200		
	Ŀ	:	۰.	:]							$\mathbf{N} = \mathbf{N}$	~100s	pati	ents		
	~20,000 × N					~	~20,00	$0 \times N$	1		~7,000 × N					

Transcriptome Proteome Correlation

- Within-sample correlation by gene
- Across-sample correlation by gene

• Spearman correlation + FDR

Results from Transcriptome Proteome Correlation

Zhang, B. et al. Nature (2014)

Results from Transcriptome Proteome Correlation

С

Copy Number Cis Trans Effects

- Correlate copy number changes with mRNA and protein abundance
- Genes directly affected by the CNA

OR

• Genes indirectly affected by the CNA

Results from Copy Number Cis Trans Effects

Zhang, B. et al. Nature (2014)

Results from Copy Number Cis Trans Effects

0.43

Protein

0.70

Protein

0.49

Zhang, B. et al. Nature (2014)

Protein

Proteogenomics patient subtyping

- Cluster patients based on proteomics profiles
- Compare to established genomic / transcriptomic based clusters

Results from Proteogenomics patient subtyping

Relative protein abundance (\log_2)

-2

a

Results from Proteogenomics patient subtyping

Cancer Associated Expression Changes

- Differential expression analysis of mRNA and protein abundance
- Between tumour tissue and adjacent normal tissue

Results from Cancer Associated Changes

Custom Database Construction

Customized protein sequence database building

Protein-level validation, gene model refinement

Nesvizhskii, Nature Methods (2014)

Why Custom Database

Nesvizhskii, Journal of Proteomics (2010)

Why Custom Database

b Peptide identification using MS/MS spectra

Nesvizhskii, Nature Methods (2014)

Why Custom Database

Publicly available databases

Generic human proteome database

- □ Current human proteome databases for searching MS/MS spectra miss novel tumorspecific genetic aberrations.
- □ Adding sequences from specialized databases such as OMIM, neXtProt, ChimerDB and COSMIC can help identify previously observed mutations.

Genomics

Modified database

- WGS/exome-seq
- □ Six-frame translation of wholegenome sequencing may reveal novel open reading frames.
- Novel SNVs and indels may be added to the database.
- Exhaustive splice junction databases from existing gene models.

Transcriptomics

Microarray/EST/RNA-seq

- Reduce database size by keeping only proteins observed to be expressed.
- ☐ Add inferred SNVs, indels, RNA editing and detected splice junctions.

Modified database

Custom Database Construction

Customized protein sequence database building

- Somatic SNV
- Germline SNV

- SNVs
- Indels

- Indels
- Splice variants

- Alternative transcripts
- Noncoding transcripts
- •

Tools for Custom Database Construction

- customProDB
- QUILTS

Mutant Peptide Database Creation

Results from SNV Search

Zhang, B. et al. Nature (2014)

Impact = (Exp - Median_{non-mutant}) / MAD_{non-mutant}

Zhang, B. et al. Nature (2014)

Novel Peptide Database Creation

Type of peptides

Nesvizhskii, Nature Methods (2014)

Personal Novel Peptides Search Results

Sample

Prostate Cancer Associated Transcript-14

Transcript levels of

- PCAT14-202
- PCAT14-203

are univariately predictive of biochemical recurrence

PCAT14-203 : 370-975

MGQTESKYASYLSFIKILLRRGGVRASTENLITLFQTIEQFCPWF PEQGTLDLKDWEKIGKELKQANREGKIIPLTVWNDWAIIKA TLEPFQTGEDIVSVSDAPKSCVTDCEEEAGTESQ QGTESSHCKYVAESVMAQSTQNVDYSQLQEIIYPESSKLGEG GPESLGPSEPKPRSPSTPPPVVQMPVTLQPQTQVRQAQTP

Target Decoy Database Search

Questions?

What gets sweeped under the rug?

Which samples goes into the analysis

- XX number of proteins detected
- Protein abundance distributions similar to other samples
- Normal / Tumour contamination
- Expected genomic / transcriptomic features

"Extensive analyses concluded that 28 of the 105 samples were compromised by protein degradation. "

How to deal with technical replicates

- Binary measurement: protein detected in any replicate
- Abundance measurement: average ignoring zero

Which genes goes into the analysis

• Protein detected in >XX% of samples

OR

• Protein detected with minimal average of X

Copy Number of a Gene

- Copy Number assigned to 1Mbp bins
- Copy Number assigned to each nucleotide base

- Gene completely overlapping copy number aberration region
- Partial overlap with gene

Data Missingness

• Proteomics data is notorious for having missing values

Level of Missingness

- 7054 protein groups
- 6924 protein coding genes
- 3,397 in all 76 patients

Types of Missingness

- MCAR: missing completely at random
- MAR: missing at random
- MNAR: missing not at random

H: Homework H*: Homework with missing values A: Attribute of student D: Dog (missingness mechanism)

Sources of Missingness

- MCAR = MAR
 - Stochastic fluctuations, not dependent on abundance
 - Protein present but not detected / incorrectly detected
- MNAR: missing not at random
 - Left-censored: protein present but below instrument detection limits
 - Negative correlation between missingness and peptide abundance
- MCAR / MNAR = ???

Types of Imputation Algorithms

- Single digit replacement
 - Mean not recommended
 - Minimum
 - Probabilistic minimum
- Imputing around the limit of detection
 - Underestimate biological variation
 - More suitable for values Missing Not At Random

Types of Imputation Algorithms

- Impute by local structure
 - K-nearest neighbors
 - local least squares (LLS)
 - Maximum Likelihood estimation
 - Single value deposition
- Impute by Global structure
 - Probabilistic PCA
 - Bayesian PCA
 - Single value deposition
- More suitable for Missing At Random data
 - In general cases work better than the previous class

General Guidelines

- Impute at the peptide level
 - Aggregative to the protein level has implement imputation rules
- If don't know about MCAR / MNAR ratio
 - Use MCAR suitable methods
- Could consider hybrid strategies

Where to find proteogenomics datasets for fun?

The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) is a national effort to accelerate the understanding of the molecular basis of cancer through the application of large-scale proteome and genome analysis, or proteogenomics.

https://proteomics.cancer.gov/data-portal

Data Portal

The CPTAC Data Portal is a centralized repository for the public dissemination of proteomic sequence datasets collected by CPTAC, along with corresponding genomic sequence datasets. In addition, available are analyses of CPTAC's raw mass spectrometry-based data files (mapping of spectra to peptide sequences and protein identification) by individual investigators from CPTAC and by a Common Data Analysis Pipeline.

A core principle of CPTAC is the sharing and re-use of data across the biomedical research community, as vital to accelerating scientific discovery and its clinical translation to patient care. The Data Portal represents the NCI's largest public repository of proteogenomic comprehensive sequence datasets, essentially a Proteogenomic Cancer Atlas (PCA). Proteomic data and related data files are organized into datasets by study, sub-proteome, and analysis site. All **data is freely available to the public, subject to the Data Use Agreement**. Reference mass spectral peptide libraries resulting from these studies may also be downloaded freely from the <u>NIST Peptide Library</u>.

Available Data

Data Use Agreement

https://cptac-data-portal.georgetown.edu/cptacPublic/

PRINT

Data Portal

	Latest Data Release and Publications:
CPTAC 3 (2016-present)	October 2019 Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma
CPTAC 2 (2011-2016)	Cell (2019) Oct 31;179(4):964-983.e31 doi: 10.1016/j.cell.2019.10.007
CPTC (2006-2011)	analyses of paired tumor and adjacent liver tissues. Cell (2019) https://doi.org/10.1016/j.cell.2019.08.052.
External Studies	June 2019
Query Data	Pediatric Brain Tumor proteomic data release from the Pediatric Brain Tumor Atlas: Children's Brain Tumor Tissue Consortium (CBTTC) cohort of the Gabriella Miller Kids First Pediatric Research Program (Kids First).

Help

Study Name	Description	Publications
Proteogenomics of ccRCC new	Comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of 103 treatment-naive ccRCC and paired normal adjacent tissue samples.	liα.
HBV-Related Hepatocellular Carcinoma <mark>new</mark>	Proteogenomic characterization of 159 HBV+ patients with hepatocellular carcinoma (HCC). Global proteome and phosphoproteome analyses is provided along with peptide spectrum matches and summary reports.	Mat .
Pediatric Brain Cancer Pilot Study new	A pediatric brain cancer cohort of 199 patients was used for a proteogenomic pilot study. Global proteomic and phosphoproteomic mass spectrometry using the 11-plexed isobaric tandem mass tags (TMT-11) was used to characterize 219 brain tumor samples across seven histologies: Low Grade Glioma, High Grade Glioma, Ependymoma, Ganglioglioma, Craniopharyngioma, Atypical Teratoid Rhabdoid Tumor (ATRT), Medulloblastoma. (Twenty patients from the cohort of 199 had tumor samples from 2 clinical events, totaling 219 tumors)	
CPTAC LUAD Discovery Study new	A Lung Adenocarcinoma (LUAD) discovery cohort of 111 tumor samples was analyzed by global proteomic and phosphoproteomic mass spectrometry using the 10-plexed isobaric tandem mass tags (TMT-10) following the CPTAC reproducible workflow protocol published by Mertins et al., (2018 Nature Protocols). This data release contains raw mass spectrometry data and analysis from the CPTAC Common Data Analysis Pipeline (CDAP).	

Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma

Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, et al., Cell. 2019 Oct 31;179(4):964-983.e31. doi: 10.1016/j.cell.2019.10.007

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.

Clinical Data for ccRCC tumors are provided below.

Genomic Data for ccRCC tumors is available from the NCI Genomic Data Commons (GDC), here Imaging Data for ccRCC tumors is available from NCI, The Cancer Imaging Archive (TCIA), here Proteomic Raw Data and CPTAC Proteomic Common Data Analysis Pipeline (CDAP) files are available here

Clinical

Biospecimens

Clinical Data for CPTAC CCRCC Discovery Study CPTAC CCRCC Discovery Study Specimens

Select an Option

Data Sets

DOWNLOAD

Analytical	Fraction:
------------	-----------

٥

	All	raw			
Data set name					Size
CPTAC_CCRCC_metadata_S050					136.03KB
JHU_DDA_Library					3.01GB
AID_UHL					293.52GB
Supplementary_Data_Proteome_DIA					32.65MB
Supplementary_Data_Phosphoproteome_DIA					245.39MB
CPTAC_CCRCC_Transcriptome_rpkm					53.88MB
CPTAC_CCRCC_Methylation					7.70GB
CPTAC_CCRCC_WGS_CNV					93.49MB

Data Types Available for Download

Proteomics

(ALL): Selection of this box downloads all data in the row

(raw): The original mass spectrometry(MS) instrument files

(mzML): HUPO-PSI standard raw data files generated from the original MS instrument files

(PSM): Peptide-Spectrum Match data

(prot): Protein assembly data and protein relative abundance

(meta): Clinical data files, mapping of biospecimens to iTRAQ labels or TMT10 labels (where applicable), folder and file naming conventions

Checksum files are included in all downloads for verification.

Data Sets

DOWNLOAD

Analytical Fraction:	Select an Option	\$

	All	raw	mzMl	PSN	l prot	meta	
Data set name							Size
CPTAC_CCRCC_metadata							1.68MB
CPTAC_CCRCC_Proteome_CDAP_Protein_Report.r1							254.14MB
CPTAC_CCRCC_Phosphoproteome_CDAP_Protein_Report.r1							180.44MB
CPTAC_CompRef_CCRCC_Proteome_CDAP_Protein_Report.r1							81.60MB
CPTAC_CompRef_CCRCC_Phosphoproteome_CDAP_Protein_Report.r1							33.49MB
01CPTAC_CCRCC_Proteome_JHU_20171007							23.48GB

Genomics

NIH	NATIONAL CANCER INSTITUTE GDC Data Portal	∦ Home	C Projects	Section 24	ię́∗ Analysis	Repository	Q Quick Search	Manage Sets	Login	📜 Cart 💿	GDC
	PR CPTAC-3										
							Explore Project Data	🛓 Biospecimen	📩 Clinica	I 🕹 Manifes	st
	I Summary								CASES 322		
	The project has controlled acc	ess data wh	ch requires db	GaP Access. See	instructions for	Obtaining Access to Con	<u>trolled Data.</u>		511 50		
	DbGaP Study Accession		phs00128	7					<u>9,052</u>		Ì
	Project Name Program		 CPTAC						ANNOTATIONS		
									0		
	Cases and File Counts by Data Category					Cases and F	File Counts by Experimen	tal Strategy			
	Data Category			Cases (<u>n=322</u>)	Files (n=	=9,052) Experimental S	Experimental Strategy		es (<u>n=322</u>)	Files (n=9,0	<u>152</u>)
	Sequencing Reads			322	3,227	WGS		32	22	<u>839</u> I	
	Transcriptome Profiling			322	2,585	WXS		32	22	<u>4,077</u>	
	Simple Nucleotide Variation			321	3,240	RNA-Seq		32	22	4,136	

Copy Number Variation 0 ---0 ---DNA Methylation 0 ---0 ---Clinical 0 ---0 ---Biospecimen 0 ---0 ---

Genomics

EANCER

HOME NEWS ABOUT US SUBMIT YOUR DATA ACCESS THE DATA

ズ Confluence Spaces ∨

The Cancer Imaging Archive (TCIA) Public Access

99 Blog

SPACE SHORTCUTS

(How-to articles

(Troubleshooting articles

CHILD PAGES

- Collections
- CPTAC-CCRCC

Dashboard / Wiki / Collections

CPTAC-CCRCC

Created by Tracy Nolan, last modified on Oct 03, 2019

Summary

This collection contains subjects from the National Cancer Institute's <u>Clinical Proteomic Tumor Analysis</u> <u>Consortium</u> Clear Cell Renal Cell Carcinoma (CPTAC-CCRCC) cohort. CPTAC is a national effort to accelerate the understanding of the molecular basis of cancer through the application of large-scale proteome and genome analysis, or proteogenomics. Radiology and pathology images from CPTAC Phase 3 patients are being collected and made publicly available by The Cancer Imaging Archive to enable researchers to investigate cancer phenotypes which may correlate to corresponding proteomic, genomic and clinical data.

HELP

RESEARCH ACTIVITIES

CPTAC Phase 3 collects data from ten cancer types. In TCIA, imaging from each cancer type will be contained in its own TCIA Collection, with the collection name "CPTAC-*cancertype*". CPTAC Phase 3 Imaging data is made available on TCIA each quarter as it is collected. A summary of CPTAC Phase 3 imaging efforts can be found on the CPTAC Imaging Proteomics page.

Radiology imaging is collected from standard of care imaging performed on patients immediately before the pathological diagnosis, and from follow-up scans where available. For this reason the radiology image data sets are heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. Pathology imaging is collected as part of the CPTAC qualification workflow.

Q

2 Log in

...

Search

Imaging

Data Access

Click the **Download** button to save a ".tcia" manifest file to your computer, which you must open with the <u>NBIA</u> <u>Data Retriever</u>. Click the **Search** button to open our Data Portal, where you can browse the data collection and/or download a subset of its contents.

Data Type	Download all or Query/Filter
Images (DICOM, 54.7 GB)	Ownload Q Search
Tissue Slide Images (SVS, 190 GB)	Ownload Q Search
Clinical Data API (JSON - more info)	Company Download
Discovery Study Proteomics/Clinical Data (external)	<u>CPTAC Data Portal (Georgetown)</u> <u>Proteomic Data Commons</u>
Genomics/Clinical Data (external)	Genomic Data Commons

Click the Versions tab for more info about data releases.

Lydia Liu

lydia.liu@mail.utoronto.ca

For More on Proteomics

https://mbp-tech-talks.github.io/2019-2020/04-intro-proteomic s/intro-proteomics_amanda-khoo.pdf