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Why Proteogenomics?




Why Proteogenomics

e Mutational profiles is only one of the determinants of phenotype
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Why Proteogenomics

Sequence changes

* Somatic mutations

* Insertions and/or deletions
* RNA edits

* Fusions

* Novel junctions

* Novel transcripts

Dosage changes
* Copy number alteration

Expression changes
* mRNA variation
* Epigenetic alterations

Integrative proteogenomics adds missing biology

Customized database for
searching MS/MS data

.
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Why Proteogenomic
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What do you need to do proteogenomics?




What you need for proteogenomics

e Proteomics Data

e Genomics Data

e Transcriptomics Data

e Other Data e Patient sample
N . o Tumour
o Clinical annotation o Adjacent normal
o Metabolomics o Blood normal
o Cytometry e Cellline / Organoid
o Hi-C

e Model organism
e PDX

Sinha A. et al., Cancer Cell (2019)



Proteomics Data

Shotgun proteomics
Phosphoproteomics

Targeted proteomics
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Transcriptomic Data

RNA Microarray
RNA-sequencing
Single-cell RNA-sequencing
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~20,000 X N

Somatic coding SNVs, Indels
Assembled transcripts

Fusion genes
Circular RNAs



Other Data

e (linical annotation
e MicroRNA

e Metabolomics

e Epigenomics

o DNA Methylation
o Histone Acetylation

e C(Cytometry
o Hi-C



What do proteogenomics studies do?




Omics Integration

[ Genomics ] [Transcriptomics] [ Proteomics ]
DA A 27387
] ] N 2509
o 1 ... O | W N S
WY Py
: [ 237 3549 ... 4583] [ 880530 938230 ... 2059600]
0 1 0 . ; . ; i . . :
M= |: = . | T=|178 345 ... 9 | P= 1988200 NA ... 1226300
0 0 0 i : : : : : :
| 317 ... 1247 7823] | NA NA 6716200 |

T [ N = ~100s patients }
20,000 X N ~20,000 X N ~7,000 X N




Transcriptome Proteome Correlation

e Within-sample correlation by gene

e Across-sample correlation by gene

e Spearman correlation + FDR



Results from Transcriptome Proteome Correlation

A Steady state mMRNA-protein correlation b Correlation between mRNA and protein variation
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Results from Transcriptome Proteome Correlation
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Copy Number Cis Trans Effects

e Correlate copy number changes with mRNA and protein abundance

e Genes directly affected by the CNA
OR

e Genes indirectly affected by the CNA



Results from Copy Number Cis Trans Effects

a CNA-mRNA correlation b CNA-protein correlation
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Results from Copy Number Cis Trans Effects
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Proteogenomics patient subtyping

e C(Cluster patients based on proteomics profiles

e Compare to established genomic / transcriptomic based clusters



Results from Proteogenomics patient subtyping

a Proteomic subtype
A B C D E

Relative protein abundance (log,)

Zhang, B. et al. Nature =2014= h



Results from Proteogenomics patient subtyping
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Cancer Associated Expression Changes

e Differential expression analysis of mMRNA and protein abundance

e Between tumour tissue and adjacent normal tissue



Results from Cancer Associated Changes
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Custom Database Construction

Customized protein sequence database building

| v

Genomics Transcriptomics s omrmp
DNA sequencing RNA-seq L'g l?/losr?l\'/lcg ”
ESTs Ribosome profiling .

1 t |

Protein-level validation, gene model refinement
Nesvizhskii, Nature Methods (2014)




Why Custom Database

Sample preparation and peptide separation
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Nesvizhskii, Journal of Proteomics (2010) Theoretical matching Acquired
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Nesvizhskii, Nature Methods (2014)

Why Custom Database

b Peptide identification using MS/MS spectra

Database searching

Acquired MS/MS
spectrum

Sequence tag-based DB searching

Sequence tag
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De novo sequencing
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Full or partial peptide
sequence

l

Sequence homology
searching to find
closest DB match



Why Custom Database

Publicly available databases | Genomics

O Current human proteome databases
‘ for searching MS/MS
spectra miss novel tumor-
specific genetic aberrations.

WGS/exome-seq

O Six-frame translation of whole-
: genome sequencing may reveal
Generic human a novel open reading frames.

proteome )
database O Adding sequences from Modified = Novel SNVs and indels may be
specialized databases such as OMIM, database added to the database.
neXtProt, ChimerDB and COSMIC . - .
can help identify previously O Exhaustive splice junction databases
observed mutations. from existing gene models.
Transcriptomics

Microarray/EST/RNA-seq

O Reduce database size by
keeping only proteins observed to be

expressed.
O Add inferred SNVs, indels,
Modified RNA editing and detected splice
database junctions.

Alfaro et al., Nature Methods (2014)



Custom Database Construction

Customized protein sequence database building

Genomics
- DNA sequencing
ESTs

1

Protein-level validation, gene model refinement

e Somatic SNV e SNVs

e Germline SNV e Indels

e Indels e Alternative transcripts

e Splice variants e Noncoding transcripts
[ J

Nesvizhskii, Nature Methods (2014)



Tools for Custom Database Construction

e customProDB
e QUILTS



Mutant Peptide Database Creation

Genomic - “
sequence i ~
B
Protein
database
—- s ]
! \ \ { \
TATTTTTCAGAAAATGTCAAGACAGCA ... YFSENVKTA ...
TATTTCTCAGAAA T TGTCAAGACAGCA ... YFSEIVKTA ...

Missense DNA
Mutation

Theoretical
peptides

K R

K] | YFSENVK |[TA...

Altered Amino Acid
Sequence

YFSEIVKTA

Mutant Peptide
Sequence

32



Results from SNV Search
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Zhang, B. et al. Nature (2014)



SNV Impact

Impact = (Exp - Median / MAD

non-mutant) non-mutant

Zhanci;, B. et al. Nature =2014=



Novel Peptide Database Creation

Transcriptome

RNA-seq

Non-Coding
Transcripts

circular

RNA

Protein
database
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Junction Spanning
ORFs
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Type of peptides

Nesvizhskii, Nature Methods (2014)
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Personal Novel Peptides Search Results

~791,528
Proteins/
Patient

Count

500
400
300
200
100

200

150

100

50

200

150

100

50

Matching Spectra

Detected Unique Proteins

Detected Non-Coding Transcript

Sample

37

~317
spectra

~142 non-coding
transcript derived
proteins

~132 non-coding
transcripts



Prostate Cancer Associated Transcript-14

5 e, S i ) |
PCAT14-203 > oy Transcript levels of
IncRNA IncRNA * PCAT14-202
e e m————— i ——— )] * PCAT14-203
PCAT14-201 >

IncRNA

are univariately predictive of
biochemical recurrence

PCAT14-203 : 370-975
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GPESLGPSEPKPRSPSTPPPVVQMPVTLQPQTQVRQAQTP

White et al., European Urology (2017)



Target Decoy Database Search

MS/MS
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MS/MS spectra Database searching Peptide identifications

FDR Correction Curtomie proten seuence DB -9 e
g S I | p— - C: Peptide class (known: in reference DB)
MALALL.LL_L“

T Spec Peptide S C P
(o))
kS 4 1 ISLDAR 2.2 Known , 076
5 I N Novel - 9 2 CVEELK 4.6 Known 0.99
A | 4 FVIDAR 8.1 Novel 1.00
> 2 3 PANGK 2.1 ‘Known’ 0.01
3 g 6 NLAMR 0.7 ‘Novel 0.43
~~~~~~~~~~~~~~~ - a) Al 7 DIKMK 1.1 ‘Novel’ === q 43
N Ll ‘
Statistical analysis and filtering
DB search score-based filtering Posterior probability (P) calculation

False

' : P \ False >

Separately for each class (known and novel peptides): 2 ! )
g [l () True

For each score threshold S, calculate number 8 g

of target (NV,) and decoy (N,) peptides with S > S - w
i DB search score S Novel ~ Known
Estimate FDR Peptide class C

Select threshold S (different for known and novel

peptides) corresponding to desired FDR SEIeE prabEbiliy TEshald B,

l corresponding to desired FDR

FDR-filtered data set




Break!

Questions?




What gets sweeped under the rug?




Which samples goes into the analysis

e XX number of proteins detected
e Protein abundance distributions similar to other samples
e Normal / Tumour contamination

e Expected genomic / transcriptomic features

“Extensive analyses concluded that 28 of the 105 samples were compromised

by protein degradation. “



How to deal with technical replicates

e Binary measurement: protein detected in any replicate

e Abundance measurement: average ignoring zero



Which genes goes into the analysis

e Protein detected in >XX% of samples
OR

e Protein detected with minimal average of X



Copy Number of a Gene

e Copy Number assigned to 1TMbp bins

e Copy Number assigned to each nucleotide base

e Gene completely overlapping copy number aberration region

e Partial overlap with gene



Data Missingness

e Proteomics data is notorious for having missing values
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Types of Missingness

e MCAR: missing completely at random

e MAR: missing at random H: Homework ~ —
H*: Homework with missing values

A: Attribute of student
D: Dog (missingness mechanism)

e MNAR: missing not at random

DOG EATS DOG EATS DOG EATS
ANY STUDENTS’ BAD
HOMEWORK HOMEWORK HOMEWORK
A———H A——>H A——H
D— > H* D— > H* D— H*
MISSING COMPLETELY MISSING MISSING NOT

AT RANDOM AT RANDOM AT RANDOM




Sources of Missingness

e MCAR=MAR

o  Stochastic fluctuations, not dependent on abundance
o Protein present but not detected / incorrectly detected

e MNAR: missing not at random

o Left-censored: protein present but below instrument detection limits
o Negative correlation between missingness and peptide abundance

e MCAR/MNAR =777



Types of Imputation Algorithms

e Single digit replacement

o Mean - not recommended
o  Minimum
o  Probabilistic minimum

e Imputing around the limit of detection

o Underestimate biological variation
o More suitable for values Missing Not At Random



Types of Imputation Algorithms

e Impute by local structure

o K-nearest neighbors
o local least squares (LLS)

o Maximum Likelihood estimation
o Single value deposition
m

pute by Global structure

o Probabilistic PCA
o Bayesian PCA
o Single value deposition

e More suitable for Missing At Random data

o In general cases work better than the previous class



General Guidelines

e Impute at the peptide level

o Aggregative to the protein level has implement imputation rules

e If don't know about MCAR / MNAR ratio

o Use MCAR suitable methods
e Could consider hybrid strategies



Where to find proteogenomics datasets for fun?




CPTAC

The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium
(CPTAC) is a national effort to accelerate the understanding of the molecular
basis of cancer through the application of large-scale proteome and genome

analysis, or proteogenomics.



CPTAC Data Portal

https://proteomics.cancer.gov/data-portal

Data Portal

The CPTAC Data Portal is a centralized repository for the public dissemination of proteomic sequence datasets
collected by CPTAC, along with corresponding genomic sequence datasets. In addition, available are analyses of
CPTAC's raw mass spectrometry-based data files (mapping of spectra to peptide sequences and protein
identification) by individual investigators fromn CPTAC and by a Commmon Data Analysis Pipeline.

A core principle of CPTAC is the sharing and re-use of data across the biomedical research community, as vital to
accelerating scientific discovery and its clinical translation to patient care. The Data Portal represents the NCl's
largest public repository of proteogenomic comprehensive sequence datasets, essentially a Proteogenomic
Cancer Atlas (PCA). Proteomic data and related data files are organized into datasets by study, sub-proteome,
and analysis site. All data is freely available to the public, subject to the Data Use Agreement. Reference
mass spectral peptide libraries resulting from these studies may also be downloaded freely from the NIST
Peptide Librarye.

Available Data Data Use Agreement




CPTAC Data Portal

https://cptac-data-portal.georgetown.edu/cptacPublic/

/ﬁ‘ DATA PORTAL HOME A ASSAY PORTAL Y ANTIBODY PORTAL ABOUT
g - ‘754% ~=ungy
j 10%
el ok @\Ql\

Data Portal

B PRINT
Latest Data Release and Publications:
October 2019
Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma
Cell (2019) Oct 31,179(4):964-983.€31 doi: 10.1016/j.cell.2019.10.007

CPTAC 3
(2016-present)

CPTAC 2 (2011-2016)
Integrated proteogenomic characterization of liver cancer from 159 HBV+ patients with proteome and phosphoproteome

CPTC (2006-2011) analyses of paired tumor and adjacent liver tissues. Cell (2019) https:/doi.org/10.1016/j.cell.2019.08.052.
External Studies June 2019

Pediatric Brain Tumor proteomic data release from the Pediatric Brain Tumor Atlas: Children’s Brain Tumor Tissue Consortium
(CBTTC) cohort of the Gabriella Miller Kids First Pediatric Research Program (Kids First).

Query Data

Help




CPTAC Data Portal

Study Name Description Publications

Proteogenomics of ; : : ; - ; ) .
_— Comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic o
ce
characterization of 103 treatment-naive ccRCC and paired normal adjacent tissue samples.
new

HBV-Related

Proteogenomic characterization of 159 HBV+ patients with hepatocellular carcinoma (HCC). Global
Hepatocellular

Carci proteome and phosphoproteome analyses is provided along with peptide spectrum matches and M|
arcinoma

summary reports.
new

A pediatric brain cancer cohort of 199 patients was used for a proteogenomic pilot study. Global

o ) proteomic and phosphoproteomic mass spectrometry using the 11-plexed isobaric tandem mass
Pediatric Brain Cancer

Pilot Study
new

tags (TMT-11) was used to characterize 219 brain tumor samples across seven histologies: Low Grade
Glioma, High Grade Glioma, Ependymoma, Ganglioglioma, Craniopharyngioma, Atypical Teratoid
Rhabdoid Tumor (ATRT), Medulloblastoma. (Twenty patients from the cohort of 199 had tumor
samples from 2 clinical events, totaling 219 tumors)

A Lung Adenocarcinoma (LUAD) discovery cohort of 111 tumor samples was analyzed by global
CPTAC LUAD Discovery proteomic and phosphoproteomic mass spectrometry using the 10-plexed isobaric tandem mass
Study tags (TMT-10) following the CPTAC reproducible workflow protocol published by Mertins et al., (2018
new Nature Protocols). This data release contains raw mass spectrometry data and analysis from the
CPTAC Common Data Analysis Pipeline (CDAP).



CPTAC Data Portal

Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma

Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu VY, et al,, Cell. 2019 Oct 31;179(4):964-983.e31. doi: 10.1016/.cell.2019.10.007

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed
comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive
ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with
genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular
mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation
processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified
microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular
pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic
alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.

Clinical Data for ccRCC tumors are provided below.

Genomic Data for ccRCC tumors is available from the NCI Genomic Data Commons (GDC), here

Imaging Data for ccRCC tumors is available from NCI, The Cancer Imaging Archive (TCIA), here

Proteomic Raw Data and CPTAC Proteomic Common Data Analysis Pipeline (CDAP) files are available here



Biospecimens

° °
Cll n I Cal Clinical Data for CPTAC CCRCC Discovery Study

CPTAC CCRCC Discovery Study Specimens

Data Sets

DOWNLOAD

Select an Option

o

Analytical Fraction:

All raw mzML PSM prot meta

Data set name Size
CPTAC_CCRCC_metadata_S050 136.03KB
JHU_DDA_Library 3.01GB
JHU_DIA 293.52GB
Supplementary_Data_Proteome_DIA 32.65MB
Supplementary_Data_Phosphoproteome_DIA 245.39MB
CPTAC_CCRCC_Transcriptome_rpkm 53.88MB
CPTAC_CCRCC_Methylation 7.70GB
CPTAC_CCRCC_WGS_CNV 93.49MB



Proteomics

Data Types Available for Download

ALL): Selection of this box downloads all data in the row
aw): The original mass spectrometry(MS) instrument files

=

PSM): Peptide-Spectrum Match data
prot): Protein assembly data and protein relative abundance

(
(
(
(
(
(
conventions

Checksum files are included in all downloads for verification.
Data Sets

DOWNLOAD

Analytical Fraction: SeleckanOption ¢

All raw mzML PSM prot meta

mzML): HUPO-PSI standard raw data files generated from the original MS instrument files

meta): Clinical data files, mapping of biospecimens to iTRAQ labels or TMT10 labels (where applicable), folder and file naming

Data set name Size
CPTAC_CCRCC_metadata 1.68MB
CPTAC_CCRCC_Proteome_CDAP_Protein_Report.ril 254.14MB
CPTAC_CCRCC_Phosphoproteome_CDAP_Protein_Report.ri 180.44MB
CPTAC_CompRef_CCRCC_Proteome_CDAP_Protein_Report.ri 81.60MB
CPTAC_CompRef_CCRCC_Phosphoproteome_CDAP_Protein_Report.ri 33.49MB
01CPTAC_CCRCC_Proteome_JHU_20171007 23.48GB
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® CPTAC-3

B8 Summary CASES o
322 [
The project has controlled access data which requires dbGaP Access. See instructions for Obtaining Access to Controlled Data.
Project ID CPTAC-3 FILES A
DbGaP Study Accession phs001287 9,052

Project Name -

Program CPTAC ANNOTATIONS

0 74

Cases and File Counts by Data Category Cases and File Counts by Experimental Strategy

Data Category Cases (n=322) Files (n=9,052)  Experimental Strategy Cases (n=322) Files (n=9,052)

M Sequencing Reads 322 =mm 3227 = B WGS 322 =mm 839 1
Transcriptome Profiling 322 =mm 2,585 = WXS 322 omm 4,077 =

W Simple Nucleotide Variation 321 =mm 3240 = W RNA-Seq 322 =mm 4,136 =
Copy Number Variation 0 -- 0--

B DNA Methylation 0 -- 0--
Clinical 0 -- 0--

M Biospecimen 0 -- 0 --
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Files Cases «
Project Id CPTAC-3 Experimental Strategy RNA-Seq & Advanced Search

Add a Case/Biospecimen Filter

v Case o ™ Add All Files to Cart View 322 Cases in Exploration (¢ Browse Annotations

Q e.g. TCGA-A5-A0G2, 432fe4a9-2...

Upload Case Set Files (4,136) Cases (322) 9.07 TB

Primary Site Project Disease Type Gender Vital Status

v Case ID
eg. TCGA-DD*, *DD*, TCGA-DD-AAVP Go! a
v Primary Site
| bronchus and lung m
kidney [100] SNeiig B SRS EStes = |f  &Biospecimen & Clinical JSON = TSV  Save/Edit Case Set
uterus, nos m
- Available Files per Data Category
Cart CaselD Project Primary Site Gender Files Annotations Slides
Seq Exp SNV CNV Meth Clinical Bio
vProgram T e e s
() =~ C3N-00244 CPTAC-3  Kidney Male 32 12 10 10 0 0 0 0 0 --
CPTAC
™~ (C3L-00183 CPTAC-3  Kidney Female 22 7 5 10 0 0 0 0 0 -
" Project Q-O ™~ (C3L-02508 CPTAC-3  Bronchus and lung Male 32 12 10 10 0 0 0 0 0 -
" TCGA-BRCA m ™~ (C3N-00547 CPTAC-3  Bronchus and lung Male 31 11 10 10 0 0 0 0 0 --
| ®m~ (C3N-02582 CPTAC-3 Bronchus and lung Male 32 12 10 10 0 0 0 0 0 --
MMRF-COMMPASS
N ) m~ C3N-01072 CPTAC-3  Bronchus and lung Male 32 12 10 10 0 0 0 0 0 -
TCGA-UCEC [ 58 |
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The Cancer Imaging Ar-
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99 Blog
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(3 How-to articles
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CPTAC-CCRCC

Dashboard / Wiki / Collections

CPTAC-CCRCC

Created by Tracy Nolan, last modified on Oct 03, 2019

Summary

This collection contains subjects from the National Cancer Institute’s Clinical Proteomic Tumor Analysis
Consortium Clear Cell Renal Cell Carcinoma (CPTAC-CCRCC) cohort. CPTAC is a national effort to accelerate the
understanding of the molecular basis of cancer through the application of large-scale proteome and genome
analysis, or proteogenomics. Radiology and pathology images from CPTAC Phase 3 patients are being collected
and made publicly available by The Cancer Imaging Archive to enable researchers to investigate cancer
phenotypes which may correlate to corresponding proteomic, genomic and clinical data.

CPTAC Phase 3 collects data from ten cancer types. In TCIA, imaging from each cancer type will be contained in
its own TCIA Collection, with the collection name "CPTAC-cancertype". CPTAC Phase 3 Imaging data is made
available on TCIA each quarter as it is collected. A summary of CPTAC Phase 3 imaging efforts can be found on
the CPTAC Imaging Proteomics page.

Radiology imaging is collected from standard of care imaging performed on patients immediately before the
pathological diagnosis, and from follow-up scans where available. For this reason the radiology image data sets
are heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. Pathology imaging is
collected as part of the CPTAC qualification workflow.
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Data Access

Imaging

Click the Download button to save a ".tcia" manifest file to your computer, which you must open with the NBIA
Data Retriever. Click the Search button to open our Data Portal, where you can browse the data collection
and/or download a subset of its contents.

Data Type Download all or Query/Filter

Images (DICOM, 54.7 GB) v
Tissue Slide Images (SVS, 190 GB) W
Clinical Data API (JSON - more info) © Download

Discovery Study Proteomics/Clinical Data (external) e CPTAC Data Portal (Georgetown)
e Proteomic Data Commons

Genomics/Clinical Data (external) Genomic Data Commons

Click the Versions tab for more info about data releases.
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For More on Proteomics

https://mbp-tech-talks.github.io/2019-2020/04-intro-proteomic

s/intro-proteomics amanda-khoo.pdf
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