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Agenda
● Introduction & brief overview of medical imaging
● Imaging basics

○ What is an image?
○ Image formation
○ Images are objects in space
○ Digital imaging, sampling and quantization

● Operations on images
○ Resampling & interpolation
○ Thresholding
○ Noise
○ Convolution and filtering

● Overview of machine learning in medical imaging
● Practical workshop in Python
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What is medical imaging?

Diagnose and monitor 
neurodegenerative 
diseases: PET, MRI

Diagnose cancer: CT, MRI Identify traumatic 
injuries: CT, radiography

Examine foetal health in 
utero: ultrasound (US)

Medical imaging: non-invasive examination of structure, physiology and 
pathology inside the human body.

From left: 
Ardila et al., Nat Med. (2019)

Okamura et al. Clin Transl Imaging (2018)
Mutch et al. Neurosurg Clin N Am. (2016)

GE Healthcare in Prince & Links, Medical Imaging Signals and Systems 2nd ed. (2015)
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Imaging basics

● Visible light source (photography)
● X-ray tube (CT, radiography)
● Radioisotope injected into the patient (PET, SPECT)
● RF pulse (MR)

Gonzalez & Woods, Digital Image Processing 3rd ed. (2008)



Imaging basics

Interaction depends on illumination & object:
● Light reflected off the skin
● Change in X-ray energy depending on tissue type

Gonzalez & Woods, Digital Image Processing 3rd ed. (2008)
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Imaging basics

● 2- or 3-dimensional representation of the 
object

● Appearance depends both on the object 
and illumination source → different 
images of the same object possible

● Think of it as a function taking the spatial 
coordinates and returning the 
measurement at given locationGonzalez & Woods



Imaging basics

Image
Function of 
two/three 

arguments (x, y, z) 
=

Gonzalez & Woods, Digital Image Processing 3rd ed. (2008)



Imaging basics
Example: projection radiography (“X-ray”):
● Object: the patient’s body
● Energy source: X-ray tube
● Imaging system: radiographic film/digital sensor
● Image: function of (x, y) coordinates giving the 

measured X-ray intensity at that point

Siemens Healthineers Prince & Links, Medical Imaging Singals and Systems 2nd ed. (2015)



Imaging basics
Example: computed tomography (CT):
● Object: the patient’s body
● Energy source: X-ray tube
● Imaging system: CT scanner
● Image: function of (x, y, z) coordinates giving the 

measured X-ray intensity at that point (3D image 
made up of 2D slices)

Dewndey A K., Sci Am (1990)Siemens Healthineers



Digital imaging

Gonzalez & Woods, Digital Image Processing 3rd ed. (2008)



Digital imaging

● Analog signals: 
take values in a continuous range and 
are defined on continuous set of points

● Digital signals: 
take values from a discrete set and are 
defined on discrete points

● Computers work with digital signals; 
any signal can be digitized in 2 steps:

○ Sampling (discretizing the coordinates)
○ Quantization (discretizing the values) The red signal is obtained by digitizing the grey signal



Sampling

● Taking measurements at points in a 
discrete set (e.g. on a rectangular 
grid)

● Point measurements are called 
pixels (picture elements) in 2D or 
voxels (volume elements) in 3D 
(they are mathematical points, not 
little squares/cubes!)

● Pixel (voxel) spacing is the 
distance between measurement 
points, determines the spatial 
resolution

Prince & Links



Quantization

● Similar to sampling, but on 
measured intensity values

● Example:
○ X-ray intensity can take any 

value > 0
○ Restrict to “bins” every 10 units
○ E.g. [26.94, 35.98, 0.48, 15.13] 

→ [20, 30, 0, 10]
● Number of quantization levels 

determines the intensity 
resolution

Gonzalez & Woods



Images are objects in space

https://raw.githubusercontent.com/ymirsky/CT-GAN/master/readme/coordinate_systems.png



The three components of image geometry
● Origin: the location of the (0, 0, 0) voxel in world coordinates (with 

respect to some known reference point in the scanner)
● Spacing: the distance between voxels in (x, y, z) directions in mm
● Direction: the 3D rotation of the coordinate axes (most commonly no 

rotation, used in certain CT and MR acquisition protocols)

Origin: translation Spacing: scaling Direction: rotation
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Why it matters?

● A PET-CT machine acquires images in 2 modalities at the same time
● Can easily match them knowing the position of the patient in scanner 

coordinates

Images from Ben Glocker



Resampling

Resampling: sampling a sampled image
● Change size (e.g. for faster processing with smaller images)
● Harmonize acquisition parameters (e.g. one scanner might use .5 mm 

spacing, another 1 mm spacing)
● Perform geometric transformations (rotations, translations, etc.)



Resampling example
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Resampling example

Spacing: (1 mm, 1 mm)
Size: (512 px, 512 px)

New spacing: (1.5 mm, 1.5 mm)
New size: (341 px, 341 px)



Resampling: interpolation
● In general, the new sampling points 

will not align with the current sampling 
grid
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Resampling: interpolation
● In general, the new sampling points 

will not align with the current sampling 
grid

● Simple solution: use the nearest 
known sample (nearest neighbour 
interpolation)

● Better solution: assume intensity 
changes approximately linearly 
between nearby values, fit 2 sets of 
lines (in x/y directions) and read out 
the value ((bi)linear interpolation)



Resampling: rotation



Resampling: rotation



Intensity transformations

● Most medical imaging modalities are greyscale: a single scalar value 
per pixel → pixel values are called grey-level intensities

● Some image modalities have defined (pseudo) units for grey level 
intensities, allowing absolute comparison between images:
○ e.g CT: Hounsfield units (HU), defined as 0 for water and -1000 for air

● Other modalities can have arbitrary grey-level values with no defined 
units, allowing only for relative comparison within an image
○ e.g. T2-weighted MR



Intensity transformations: segmentation

● Image segmentation: separating one or more regions of interest from 
regions that do not contain information relevant for the task

Baracos et al. Nat Rev Dis Primers. (2018)

Separate different types of normal tissue Separate tumour from normal tissue



Thresholding
● Simplest method of image segmentation: separating one or more 

regions of interest from regions that do not contain relevant information
● Useful for e.g. locating a specific tissue type in an image
● Algorithm:

for each pixel in image:
if (pixel ≥ lower threshold) and (pixel ≤ upper threshold):

set pixel to 1
otherwise:

set pixel to 0



Noise
● Noise refers to variation in grey 

level intensity values that does not 
correspond to real features of the 
object

Image corrupted with additive Gaussian noise.
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Noise
● Noise refers to variation in grey 

level intensity values that does not 
correspond to real features of the 
object
○ Random variation due to 

stochastic nature of underlying 
physical processes

○ Errors during image 
reconstruction

○ Corruption during 
transmission/storage

● The best way to remove noise is 
at the source; can be reduced 
using filtering methods

Image corrupted with additive Gaussian noise.



Filtering

● Altering the intensity values in 
an image to achieve a 
particular effect

● Output determined by the 
specifics of the operator (filter)

● Basis of most intensity-altering 
operations

Blurring 
filter

Edge detection 
filter



Example: Gaussian blur

● Replaces each pixel in the 
image by the average of values 
in its neighbourhood weighted 
using the Gaussian function

● Gives more weight to nearby 
values, less to more distant 
neighbours

● Can be efficiently calculated 
using convolution

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm



Example: Gaussian blur
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programming (e.g. thresholding: need to specify the threshold bounds)
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Machine learning in medical imaging

● Most of the algorithms we’ve talked about so far require explicit 
programming (e.g. thresholding: need to specify the threshold bounds)

● Machine learning algorithms build a mathematical model of sample 
data in order to make predictions or decisions without being explicitly 
programmed to perform the task. (Wikipedia)

● ⇒ can use general purpose learning algorithms (currently trending: deep 
convolutional neural networks) to learn to solve problems from large 
datasets



Machine learning in medical imaging

Classification:
e.g. prognosis in head & neck cancer

Probability of 
death before 
2 years

0.12
0.98

...

Convolutional neural network

Kazmierski M., BSc thesis (2019)

Output: image-level class labels



Machine learning in medical imaging

Semantic segmentation:
e.g tumour & adjacent organ segmentation for radiotherapy planning

Nikolov et al. arXiv:1809.04430v1 (2018)

Output: pixel/voxel-level class labels



Machine learning in medical imaging

De-noising & superresolution:
e.g. improving quality of cardiac MRI

Output: higher quality image
Oktay et al. IEEE Trans Med Imag (2017)



Machine learning in medical imaging

Object detection, localisation, recognition:
e.g. detection & malignancy classification of lung nodules

Output: object location/bounding box & class probability
Ardila et al. Nat Med (2019)



Machine learning in medical imaging

Image registration:
e.g. multi-modal image fusion

Output: aligned images
Images from Ben Glocker



Machine learning in medical imaging

● That doesn’t mean the simple algorithms are useless or obsolete! They 
in fact serve as components of ML systems (e.g. in pre-processing) and 
can be used to solve certain problems without requiring a lot of training 
data



Useful resources
● SimpleITK Notebooks (http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/) A much more thorough overview of SimpleITK 

features, including advanced concepts like image registration.
● SimpleITK documentation (https://itk.org/SimpleITKDoxygen/html/namespaceitk_1_1simple.html) The ultimate SimpleITK reference, although 

at times difficult to navigate.
● A. R. Smith, ‘A Pixel Is Not A Little Square, A Pixel Is Not A Little Square, A Pixel Is Not A Little Square! (And a Voxel is Not a Little Cube)’, p. 11, 

Jul. 1995. A good explanation of image reconstruction in general, and why the “small square” model of pixels is not correct.
● R. C. Gonzalez and R. E. Woods, Digital image processing, 3rd ed. Upper Saddle River, N.J: Prentice Hall, 2008. Classic computer vision 

textbook, covers most aspects of traditional image processing.
● M. A. Haidekker, Advanced biomedical image analysis. Hoboken, N.J: John Wiley & Sons, 2011. Very good book with a lot of useful medical 

imaging-specific (and not only) algorithms, although some approaches have been superseded by machine learning.
● J. L. Prince and J. M. Links, Medical imaging signals and systems, 2nd ed. Boston: Pearson, 2015. Good introductory textbook focusing on 

the mathematics and physics of medical imaging.
● PyDicom (https://pydicom.github.io/pydicom/stable/) and the DICOM standard 

(http://dicom.nema.org/medical/dicom/current/output/html/part01.html) Very useful when working with clinical images, especially in oncology.
● A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. W. L. Aerts, ‘Artificial intelligence in radiology’, Nature Reviews Cancer, vol. 18, 

no. 8, pp. 500–510, Aug. 2018, doi: 10.1038/s41568-018-0016-5. Interesting review of current applications and challenges for machine 
learning in radiology.

http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/
https://itk.org/SimpleITKDoxygen/html/namespaceitk_1_1simple.html
https://pydicom.github.io/pydicom/stable/
http://dicom.nema.org/medical/dicom/current/output/html/part01.html


Python workshop



Tools of the trade: SimpleITK

Pros:
● Seamlessly handles 2D and 3D images
● Keeps track of image geometry (spacing, 

direction, world origin)
● Handles many common image storage 

formats (DICOM, NIfTI, NRRD)
● Many fast algorithms for image 

processing, tailored to medical images

Cons:
● Python wrapper around a C++ library → 

API can get pretty ugly
● Integration with the rest of the Python 

scientific stack is not great
● Has its own way of doing things, often 

subtly incompatible with the rest of 
Python ecosystem



Tools of the trade: Numpy, SciPy and Matplotlib

Pros:
● The Python scientific computing stack is 

built on them
● Backed by very fast C/Fortran libraries
● Excellent implementations of many 

common algorithms
● Seamless integration with many ML 

libraries (scikit-learn, PyTorch, 
Tensorflow) 

Cons:
● The basic data structure (Numpy ndarray) 

not made for imaging
● Do not keep track of image geometry, need 

to do it manually
● Lack I/O for many medical image formats
● Do not include implementations of more 

specialized medical image processing 
algorithms



Tools of the trade: Numpy, SciPy and Matplotlib

Pros:
● The Python scientific computing stack is 

built on them
● Backed by very fast C/Fortran libraries
● Excellent implementations of many 

common algorithms
● Seamless integration with many ML 

libraries (scikit-learn, PyTorch, 
Tensorflow) 

Cons:
● The basic data structure (Numpy ndarray) 

not made for imaging
● Do not keep track of image geometry, need 

to do it manually
● Lack I/O for many medical image formats
● Do not include implementations of more 

specialized medical image processing 
algorithms

General recommendation: Load the image and do as much processing as 
possible with SimpleITK, convert to Numpy array for visualization/some 
algorithm not implemented in SimpleITK/fancy deep learning stuff.


